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A Mathematical Formulations of
Related Models

A.1.  Support Vector Machine (SVM)

SVM aims to find the maximum-margin hyperplane
separating two classes |1]. Let us consider training data
x € R™*? with input weight w € R™*? and bias b € R™*1.
Taking slack variable & € R"*! the primal optimization
problem becomes:

N TP
min S| +Cj§::l& (1)

st yi(wl w +b) >1-&, & >0.
The final decision function of separating hyperplane for a
given data u will be:

Class(u) = sign(w ' *u +b). (2)

A.2.  Twin Support Vector Machine (TWSVM)

TWSVM [2,3] constructs two non-parallel hyperplanes
such that each is positioned closer to one class and farther
from the other. Unlike the standard SVM, which involves
solving a single large Quadratic Programming Problem
or QPP, TWSVM formulates and solves two smaller-sized
QPPs independently. Given a set of training samples from
two classes, we partition the data x into positive and neg-
ative classes. Accordingly, we denote the positive class
samples by A € R™4*4 and the negative class samples by
B € R™5%4_ where e represents a column vector of ones
with appropriate dimension [2]. The primal problem of
TWSVM for the positive class is given by:

1
min = ||Awa + eabal® + Crefé (3)
wa,ba,t 2
st. —(Bwa+egba)+&>ep, £2>0.

Similarly for the negative class, it is given as:

1
min §||Bw3 + epbp|* + Caejé (4)

wB,bp,§

s.t. (AwB+eAbB)—|—§ZeA, £E>0.

To classify a new sample u, we have to compute the func-
tion as:

Class(u) = arg oo

A.3. Support Vector Machine with Two View
Learning (SVM-2K)

In the SVM-2K [4] model, we work with data that has
two different views or perspectives. For example, two sets
of features describing the same object. Each view is rep-
resented as a matrix: z(!) for view A and z(® for view B,
where each row contains the feature values for one train-
ing example. We have a total of m training examples, and
their class labels are stored in a label vector y. The model
learns a set of weights w™), w(® and bias terms b1, b
for each view.

To handle situations where data points aren’t perfectly
separable, the model uses slack variables €1, ¢) and 7.
These allow for some error in classification and disagree-
ment between the two views. The term € sets a tolerance
level for how much the predictions from the two views are
allowed to differ. e € R™*! be the vector of ones. Lastly,
the constants C, Cs, and D help balance the trade-offs
between accuracy, model complexity, and how closely the
two views should agree during training. Let the primal
form for a given data is given as:

. 1

min -
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£M.e®
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O+ @] + CreTeD+

Coe’€@ 4 Deyp
(6)



st |zMw® 4+ pWe — 2@ — pPe| <y + ee,
yx (2Mw® 4 pMe) > e — M),
y* (2@w® 4 5®De) > e — @)
5(1)’5(2), n>0.
The equation for final classifier for SVM-2K becomes for
m samples:

FO) =3 gt 6D (@i, ) + b0
j=1

m

@) =3 9P 6@ (a;,2) + b
j=1

N =

@) =5 (FO@) + 1)
hl) = sign(f(x)) (7)

A.4.  Multi-view Twin Support Vector Machine
(MvTWSVM)

Multi-view Twin SVM [5,/6] extends the traditional
Twin SVM by incorporating multi-view learning, which
improves the model’s ability to analyze data and effec-
tively manage heterogeneous information from multiple
sources [7]. Given the source input data z, let z(1), z(?)
be the dataset of two views i.e. view 1 and view 2 and
AW B be the positive/negative samples from view 1
, A®@ B be positive/negative samples from view 2,
AD = [AD e4], BO = [BM ep], A® = [A®) ¢ ],
B®) = [B(z) enl, wg),wf) are classifiers for positive
class, w(Bl),wg) are classifiers for negative class, Slack
variables &4, &g, for positive class; ¢V, ¢ § for neg-
ative class and Regularization constants are C,Cs, D for
positive and Dy, Dy, H for negative class respectively.

The primal problem of MvITWSVM for the first hy-
perplane is given by:

min
1 2
wi w ea.E5.m

SIADWDI? + Z 1A+
Ciepla+ Caepép + Dejn  (8)
st [ADw) — AR <)

- BYw + &4 <ep,

- BPul) +¢p <ep,

£a,€,m = 0.

Similarly for the second hyperplane it is given by:

1 1
0 S 1BVwi P + 1 B wi |+
wp’wy’ (M, (2,6
Die ¢ + Dye ¢ + Hefy

(9)

s.t. |B(1)wg) - B(Q)wg)| <0,
— A(l)wg) + C(l) S €A,
_ A(Q)wg) + 4(2) <eq,
(W, ¢®5>0.

point be w™® and u®, consider
[u®,e] and u® = [u® ], then

i (\u(l)TwS” + |u(2)wa)|) and dy =

Let  test
u®

4 =

%(|u(1)TwS)| + |u(2)Tw§32)|>. Then equation for sepa-

rator hyperplane is stated as:

11, ifdi < ds

: (10)
—1, otherwise

Class(u) = {

A.5. Random Vector Functional Link (RVFL)

RVFL [§] is a single-layer feedforward neural network
that enhances input features using randomized hidden
nodes and directly connects the input to the output for
better generalization.

Given a dataset with m training samples [z Y] or
{(zi,yi)}7xy, where z; € R%, y; € {—1,+1}, the RVFL
network output is computed as 6 = [0y, 6s,...,0,,]7 € R™
be the output weights, Z = [z Z,] € R™*2? be output
from enhancement layer and original features. Here Z, =
w' * 2 + b for input weights w € R™*¢ and b € R?¥! for
the input feature x.

The regularized least squares objective is:

min 26 - Y| + A|]

(11)

where Y = [y, y3), ...
tion parameter.

A.6.

Ym]T and X > 0 is a regulariza-

Twin Random Vector Functional Link

(TRVFL)

TRVFL [9,]10] extends the RVFL model by training
two independent RVFLs to construct two non-parallel hy-
perplanes, each closer to one class and farther from the
other, similar to the Twin SVM formulation.

Let, A and B are positive and negative class samples
respectively from the input data x. Z4 € R™4*? be the
augmented feature matrix of hidden-layer output and in-
put for positive class, Zg € R™2*? be the augmented
feature matrix for negative class, 64,05 € R? be output
weight vectors for two hyperplanes, £4 € R™4 (g € R™B
are slack variables, es,ep be vectors of ones with ap-
propriate dimension and C, D > 0 be the regularization
parameters.

For a given sample primal optimization problems are



stated as:

1
min  —||Z404]® + Cegén (12)
04l 2
s.t. —ZBGA263—53~
Similarly for the negative class as:
: 1 2 T
min  =||Zp0Og||* + Deyéa (13)
0p,€a 2

s.t.  Zalp >eq —€a.

Now, the final weight vectors 84 and 0 are stated as 04 =
—(ZYZa+el)T ZEAA and 0p = (ZL Zp+el)™ ' Z  \p,
where € > 0 is a small ridge term for stability. Given
a test sample v with final augmented feature vector Z,,
assign the label:

.
|9j Zu|

Class(u) = A
J

arg min

;nin (14)

A7 Multi View Twin Random Vector Func-
tional Link (MvTRVFL)

The MvTRVFL model improves classification by map-
ping multi-view inputs to a high-dimensional space using
random features, enabling better class separation. It con-
structs separate hyperplanes for each class and integrates
original and transformed features to capture view-specific
and inter-view information, resulting in robust and gen-
eralizable performance across diverse datasets.

Let () be the input data for view j for a given
sample = and AU, BY) are positive and negative sam-

ples respectively from input data z(9). Suppose Z i @ ¢

Rmax2d he augmented matrix 2 = [z Z0)] where
Z(j)/ [( DT *A j) —|—b(j)) AWU)] for input weights wg)
and input bias b9 for positive class of view j. Also
2 = [(wT % I?J) + b)) 2] for input weights w?)

and input bias b). The optimization problem for the
positive class is formulated as:

L= () ol - :
3 22001+ iy ehe+
j=1 j=1

oY Z T

j=1j<k

~ min
09 £ ,a() k)

(15)
2999 — 7Pg®)] < o)k

— 203 > e5 — €,

where, £€9) >0, a@® >

Similarly for the negative class, the primal optimization

problem is given as:

7Z”Z(])0(])H2+D ZeAX(J)+

j=1
Dy Z Z Ly )

i=1j<k

min
0, x @) @) (R

(16)

st 2909 — zWp)| < 4Ok,
2D > en A,

where, y@) >0, ~4@® > 0.

The objective function for separating hyperplane for
an example data u(), input weights w?) and input bias
b() of view j becomes:

29 — W) 29, where 29 = DTyl 4 p)

(17)
1, if ‘ijlefj>z§j> < ‘2521 0'9) 79

—1, otherwise

Class(u) = {
(18)

B PMvTRVFL Derivations

B.1. Linear PMvTRVFL

The extended MvTRVFL model with pinball loss is
formulated as:

Z ||Z(J)9(j)H2

+Clz€ (J) (]))

- min
09,9 £ )

+ Cy ZZeXa(j)(k) (19)
j=1j<k
st (2909 20960 < g0,
_ Zg)ag) >ep — 51(41)7
2009 < en+ 6,
where, 51(5) >0, fg) >0, aW® >0 7>0.

To derive the dual, we introduce Lagrange multipliers:

ﬁ{l)(k) D) ¢ gma for equality constramts n%j),néj)

R™B for inequality constraints related to 5 4 and § )

)\gj ). )\gj ) for non-negativity of slack variables, and o’ )(k)
for non-negativity of a?)*) The Lagrangian is then for-
mulated accordingly for the positive class as:
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(20)

Now, to remove Lagrangian multipliers we have to ap-
ply KKT condition so we need to obtain partial deriva-

tives of the above created Lagrangian form.

)
904 J<k i<k
S Z 2PN 3PP —0 (22)
89 i<k i<k
oL . _
7850) =Clep — 779) - Aﬁ” =0 (23)
A
OL 1 ¢ ;
5 = Crem =g — X =0 (24)
oL N (ks Nk N
0L Gy BP0 000y

Solving for Hg) for view j to obtain the dual formula-

tion:

0&.‘7) — (Z(J Z(J)

ZZ

( J)(k) 48 J)(k))
i<k

~ @972 (297 (0 =) (26)

Although the formula seems complex. So, to simplify
the things, we give following definitions for any view j:

oL ST (i) v NT () (k v ST (K
: :Zg) Zﬁﬂ)é)ﬁfHZZﬁ{) 59)( )7ZZ1(4J) 5%])()

A A g
AU = : ,
AmA,l Ammd
By B4
BU) — : ,
BmB,l BmB,d

AG) — [Am (W] + AD) + bfZ’)} ,
BU) — [B(j) (w] * BY) Mg))} ,

Z0 = AW 5 DT (27)

79 = BU) 4 o7 (28)
(% (%
T I A
0, . 0

Let us define ¢0) = (Z}’<k ZX)T (—ﬁ£j)(k) + ﬁéj)(k)))
Zg)T ngj) — néj))). Then after applying KKT con-

ditions we get the dual of the primal form of positive class
as:

min
()0 )

LS~ (0T (407 70\ 7 6
2;(C<JT(ZAJ ZAJ) C(J))
_%i@gj)_néj))T

=

1
st. 0< ¥ i < Crep,
~ Corea < BP0 5PV < Coen

In the similar manner we can obtain the dual form for
negative class also as:

eg) (Z(J)Tz(J)

Z Z(J)T <7ﬂ§j)(k) + Iiéj)(k)>

i<k

— @72 (297 (o - 087)) (30)

Let us define §(7)
23" (o

T j)(k T () (k
_ (ZJ<kZ(” (7,#)( ) Z DT )))

— 9%

obtain dual of the primal form for negative class as:

)) Then in similar manner we can

1 v
min 3
5(]-)7(255.7)743(2.7) o

. ST N\ —1 .
(5(])'r (Zi(aj) Zg)) 5(3))
1

(31)



Z ((¢(j) é J)) A) quantile parameter 7.

j=1 5. Non-negativity condi‘qions on all slack and auxiliary
st 0< kOO O < po variables ¢ > 0,6 > 0,a® > 0and 7 > 0
(J ) ensure the feasibility of the optimization problem

—7Diea < 977,95 < Diea. and the interpretability of the model components.

The formation of Lagrangian form becomes after ap-
plying Lagrangian multipliers for the positive class can be
written as:

where, K®_0E 40 40

multipliers for negatwe class.

B.2. Kernel-PMvTRVFL

be Lagrangian

RS VT )T p) - T 4 ¢
The kernel-PMvTRVFL can be stated as: L= 9 Z ||KT<A(]) 230 )04 1>+ C ZeB U +€5)
j=1 j=1
1 v . P 112 v
: - Kr A(])T Z(J)T 9(]) T N
6%)7&)121}51%’“”%) ; H < AAT )0 +02226A0‘(j)( )
B J=1j<k
+C Y ep(€]) +€8) SIS BT (GO K (AGT, Z§)T)p))
= =<k
£ 30 Fal +RAABT ZET)0)
J=1j<k vl . ) . . )
_ Z Zﬁéj)(k)T(a(”(k) + K, (AO)T, ZX)TW,(;)
: , . j=1j<k
st K (ADT Zz0Tye0) _ o (aWT 7 EITye(h) Ko (ABT 79T )p00)
< a), .
T T i
—K(BOT, 2009 > e — €7, Z’?” ~E(BYT, 2107 — e +€3)

, , , 1 .

-K, B(J)T’Z(J)T oY) < ¢ 4+ = (J)’ _ ‘ 1.
) S et Zn ST EABOT, 2P0 e+ €5
where,fg) >0, §g) >0, aW® >0, r>o0.

N LT O OTW) _ 33 560004000
The basic description of Kernel-PMvTRVFL is: Z A A Z & ; Z; 7 “ '
= =1j

1. The regularization term
. . 112
3251 HKMA(”T, 79Ty H controls the model

complexity by penalizing large weights in the Re- ; SR ;
producing Kernel Hilbert Space (RKHS). The slack partial derivatives of the above created Lagrangian form.

penalty term C Z;}:l ep (fgj) + §g)) handles asym- oL

Now, to obtain dual of the problem we have to obtain

= K (ADT, 2T T K (AT, 2016

metric margin violations for the negative class 969
using pinball loss.  The inter-view consistency A
penalty Co >0, 377, eyalD ) encourages predic- n Z K (AT, 70Ty T g (®)
tion agreement among different views by penalizing =
discrepancies. J
2. The mter view agreement constraint - Z K.( "z (j)T>T5(j)(k)
K, < DT Z(J)T>0(J) _ KT<A(Ic)T7ZI(4k)T>91(f)‘ < j<k
a*) ensures that predictions from different views + KT<B(j)T, Zg)T>Tn§j)
on the same positive samples remain consistent in ) . -
_ DT ZOTNT G _
the kernel-induced feature space. K (BY, Zg ) g =0
3. The lower bound constraint —K,(BUWT, Zg)TWEZ) % =— ZKT<A(k)T7 ZJ>T5§j)(k)
>ep — 51(4” enforces the minimum required margin 904 i<k
for negative class predictions, ensuring robustness v )
’ BT o T\T k
against under-prediction. + Z KT<A( ) 2y ) ﬁéj)( =0

j<k
4. The upper bound constraint —K,.(BUWT, Z(] >9(J
ep + %51(3]) imposes a quantile-based asymmet-

ric margin, regulating over-prediction based on the
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Now, define the kernel matrices as:
oy KT<A(j)T7ZX)T>7eA} o N

(KB, 20 )]

Solving for 91(4{) for view j to obtain the dual formulation:

- Sk Nk
Z@(X) (759)( )+ﬂ§J)( ))
j<k

- ©Te) (0T (1" - 1))

To simplify the things, we give following definitions for
any view j: Let’s say Kernel for a given data is defined
as Kr(t) = (t) for any data .

0(]) (@(])TG(J))

Kr(AD) = [p(w] « 4D +30) A0,
Kr(BW) = [1&(%5 « B 4 b)) B(j)} ,

Kr{z(0) = W(wT « x@) 4 ) x(j)T] ,

Kr(A(j)T,Zg)T> = Kr{ADY s Kp{zW)T 9)
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0 o7
09 = | - .
O 0
Let us define () as ¢U) =

)Tﬁéj)(k) @(])T (4) + @(J)T j)) . Then after apply-
ing KKT condltlons we get the dual form of the primal
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form of positive class as:

v

(o o))
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_ Z ( G _
772” < Ciep,

st. 0< ngj),
— Corea < AW, BYH < Chea.

min
¢ ) )

In the similar manner for negative class we obtain Hg) for
view j as:

D —eYTe)-1 (@gﬁ (_,iga‘)(k) " ,{g)(k)))
)T i)\ — )T j j
- @O (T (1))
define  §0)

QT (k) (k)
ouT (779)— (”) (05" (- =)

i )) Then in similar manner we can

Let wus

obtain dual of the primal form for negative class as:

I (5007 (69 o) " 50
2;<51 CHRCEY 5J>

-y (( G _ ¢éj>)TeA>

j=1

min
5@, 65

DO < pyes,

—1Diea <¢(J) o) < Diey.

st. 0< kW g

D) L DE g 69D 60 are

where, Ky

Lagrangian multipliers for negative class.

B.3.  Dataset Description

Table [[] presents the datasets employed in this study,
spanning domains such as handwritten digit recognition,
bioinformatics, and others.Each dataset provides unique
challenges in terms of class distribution, dimensionality,
and modality, making them ideal for evaluating the ro-
bustness of multi-view classifiers. The inclusion of diverse
datasets ensures a comprehensive assessment of the pro-
posed model’s generalization ability across various real-
world applications.

1.  Handwritten Digits

This dataset contains features extracted from hand-
written digits (0-9), sourced from Dutch utility maps. Re-
searchers digitized 200 samples for each digit class, result-
ing in a total of 2,000 binary images [11]. Each feature set
captures different aspects of the digit shapes, such as pixel
intensity, frequency domain components, and morpholog-
ical characteristics. This diversity makes the dataset well-
suited for evaluating multi-view learning approaches like
MvTRVFL, which benefit from heterogeneous feature rep-
resentations. These images are described using six dis-



tinct feature sets:

e mfeat-fou: Contains 76 Fourier coefficients repre-
senting character shapes.

e mfeat-fac: Includes 216 profile correlation values.

e mfeat-kar: Provides 64 Karhunen—Loeéve coeffi-

cients.

e mfeat-pix: Captures 240 average pixel values com-
puted over 2 x 3 windows.

e mfeat-zer: Contains 47 Zernike moment features.

e mfeat-mor: Offers 6 features based on morpholog-
ical analysis.

Each file stores all 2,000 patterns in ASCII format, where
each line corresponds to one pattern. The data is orga-
nized sequentially by class, starting with 200 patterns for
digit ‘0’, followed by 200 each for digits ‘1’ through ‘9’.
We have taken 200 samples from a total of (1,7) pairs
from 10 classes for training in first view and applied PCA
for the second view data.

2. UCI Repository Datasets

The UCI Machine Learning Repository is one of the
most widely recognized and reputable sources for bench-
mark datasets within the machine learning research com-
munity. Maintained by the University of California,
Irvine, it provides a diverse collection of datasets suitable
for tasks such as classification, regression, and clustering.

These datasets serve as standardized benchmarks for
evaluating and comparing the performance of various ma-
chine learning algorithms. Owing to its accessibility and
broad coverage of real-world applications, the repository
plays a foundational role in empirical research and the
development of robust machine learning methodologies.
These datasets span multiple domains including biology,
medicine, finance, image recognition, and text processing.
Each dataset typically comes with structured features,
target labels, and metadata including attribute descrip-
tions and source references, making them ideal for model
development, evaluation, and comparison. We have con-
sidered ecoli [12], sonar, wine , led7digit-0-2-4-5-6-
7-8-9 vs_1, pima, ecoli-0-2-6-7vs3-5,ecoli-0-4-6vs_5, new-
thyroidl, iono , wdbc, and votes datsets for our ex-
periment.

TABLE I: DATASET DESCRIPTIONS AND VIEW-WISE FEATURES

Dataset Domain Instances Features per View
mfeat-fou Handwritten Digits 2000 (200 per class) | 76 (Fourier)
mfeat-mor Handwritten Digits 2000 6 (Morphological)
mfeat-fac Handwritten Digits 2000 216 (Profile correlations)
mfeat-zer Handwritten Digits 2000 47 (Zernike moments)
mfeat-kar Handwritten Digits 2000 64 (Karhunen-Logve)
mfeat-pix Handwritten Digits 2000 240 (Pixel averages)
ecoli Bioinformatics 336 7 (Single view)

sonar Signal Processing 208 60 (Single view)

wine Chemistry / Agriculture 178 13 (Single view)
led7digit-0-2-4-5-6-7-8-9_vs_1 | Image Analysis 443 7 (after view split)
pima Medical (Diabetes) 768 8 (Single view)
ecoli-0-2-6-7_vs_3-5 Bioinformatics 224 7-8 (after view split)
ecoli-0-4-6_vs_5 Bioinformatics 205 7-8 (after view split)
new-thyroidl Medical (Thyroid Disease) 215 5 (after view split)
iono Signal Processing 351 34 (Single view)
wdbc Medical (Breast Cancer) 569 30 (Single view)
votes Political / Social 435 16 (Single view)
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FIGURE I: BOX PLOT REPRESENTATION OF CLASSIFIERS USED



Figure[l]shows a box plot that compares how well each
classifier performed in terms of accuracy and consistency.
A box plot—also known as a box-and-whisker plot—is
a simple yet powerful way to visualize how results are
spread out. It helps us quickly see which models per-
formed more steadily and which ones varied more. In
each box, the line in the middle shows the median accu-
racy, giving a sense of the typical performance, while the
top and bottom edges of the box mark the range where the
middle 50% of the results fall, known as the interquartile
range (IQR). This makes it easy to compare how tightly
grouped or spread out the classifiers’ performances were.
The whiskers extend to show the range of the data, ex-
cluding outliers, and help in assessing the variability and
consistency of each classifier’s performance. A smaller box
with shorter whiskers typically indicates higher stability
and less variation in the model’s predictions.

Average Rank

T

Average Rank

SVM-2K W1_TRVFL W2_TRVFL MyTWSVM MyTRVF PMVTRVEL

® Average Rank

FIGURE II: COMPARISON OF AVERAGE RANKS BETWEEN THE
PROPOSED MODEL AND EXISTING MODELS.

A rank-based comparison of six classifiers evaluated across
17 benchmark datasets is presented in Table 7?7, where
a lower rank indicates superior performance. The pro-
posed PMvTRVFL model consistently secures top rank-
ings, achieving the lowest overall average rank of 1.73
and delivering the best performance on the majority of
datasets. This demonstrates the model’s robustness, sta-
bility, and excellent generalization capability across di-

C Statistical Analysis

The Friedman test, originally introduced by Friedman
(1937) |15] and further extended by Demsar (2006), is
a non-parametric statistical method used to evaluate the
performance of multiple classifiers across several datasets.
In this study, we apply the Friedman test to assess and
compare the ranks of six classifiers, SVM-2K, TRVFL,
MvTWSVM, MvTRVFL and PMvTRVFL.

The Friedman test statistic XI%‘R is computed using the
following formula:

n

Z =2

) 12M

n+1)
XFR = n+1

(1)

verse domains such as signal processing, image analysis,
and medical diagnostics. In contrast, traditional meth-
ods like SVM-2K and MvTWSVM achieve significantly
higher average ranks of 4.67 and 5.12, respectively, indi-
cating comparatively weaker performance. These results
highlight PMvTRVFL’s strength in leveraging multi-view
information more effectively than both single-view and
earlier multi-view classifiers.

Figure [ provides a line graph of the average ranks
obtained by each model: SVM-2K 5.12, V1-TRVFL
3.29, V2-TRVFL 3.38, MvTWSVM 4.67, MvTRVFL 2.82,
and PMvTRVFL 1.73. The performance gap between
PMvTRVFL and other models—3.38, 1.56, 1.65, 2.94,
and 1.09, respectively—clearly illustrates its superior and
consistent performance. These rank differences under-
line the model’s effectiveness in applications ranging from
handwritten digit recognition to complex biomedical clas-
sification problems. The consistent top-tier ranking of
PMvTRVFL reinforces its capability in exploiting multi-
view data to achieve highly reliable, adaptable, and gen-
eralized classification outcomes.

Additionally, Table [ provides a comprehensive
overview of the classifiers and their associated hyperpa-
rameters, which directly influence learning behavior and
predictive capacity. Key performance metrics such as
AUC, Recall, Fl-score, and G-mean are included, offering
deep insight into the models’ ability to handle imbalanced
data and maintain accuracy across datasets. These indi-
cators consistently reflect PMvTRVFL’s superior perfor-
mance, validating its reliability, efficiency, and practical
utility in varied domains.

What makes PMvTRVFL stand out is its smart use
of multiple data views through a twin-network structure,
along with the pinball loss function that helps it han-
dle uneven class distributions by adjusting the margin for
each class. Its consistently high scores in AUC, Recall,
Fl-score, and G-mean prove that it not only works well
in theory but also delivers stable and trustworthy results
in real-world scenarios.

where M is the number of datasets, n is the number of
classifiers, and 7; is the average rank of the i-th classifier.

To analyze the significance of the result, we use the
F-distribution approximation given by:

(M —1) 'XI%“R

F =
R Mn—1)

(2)

2
— XFR

Substituting the experimental values, we compute:

o 12x17

+1.73%). = 36.7127.

(5.11% 4 3.292 + 3.38% + 4.64% 4 2.822



TABLE II: PERFORMANCE

OF DIFFERENT MODELS BASED ON AUC, RECALL, PRECISION, F1-SCORE AND GMEAN

Dataset SVM-2K [4] V1_TRVFL |10 V2_TRVFL |10 MvTWSVM |5 MvTRVFL PMvTRVFL
AUC AUC
AUC fegagl recall recall
recall AUC AUC ‘s precision precision
. s precision
precision recall recall F1-score F1-score
s . F1-score
F1-score precision precision G Gmean Gmean
Gmean F1l-score F1l-score (Cnlleaélz (C1, C2, (C1, C2,
(C1, C2, D, Gmean Gmean D1 7D2 ’ D1, D2, D1, D2,
epsilon, (C, L) (G, L) o alpha, alpha,
. D, epsilon, . .
sigma) H) epsilon, epsilon,
L) L, tau)
88.1676
93.6222 92.7131 e
92.8409 92.6573 91.8881 89.0625 89.0625 89.062’
87.5 90.7692 89.2308 98.2759 96.6102 88.1631)
98.2456 95.1613 95.082 93.4426 92.6829 (0'007812,
mfeat-fou 92.562 92.9134 92.0635 93.5111 92.6412 0 ()07812"07
92.6872 92.9393 92.1099 (0.5, 0.5, (0.5, 0.5, 0.007812;
(8, 8, 0.0078125, (0.125, (32, 0.5, 0.5, 0.5, 0.5, 0'00781257
0.01, 2) 20) 500) 0.5, 0.01, 0.0078125, ' ’
32) 100, 0.01) 0.0078125,
T 100, 0.01,
1.000000e-01)
=
99.2537 3223%
99.2537 98.5075 99.2537 106)
98.5075 100 100 100 98.5075 09.2481
100 100 100 99.2481 100 99'2509
99.2481 100 100 99.2509 99.2481 (0.0078125
mfeat-fac 99.2509 100 100 (0.0078125, 99.2509 0 6078125 ’
(0.125, 100 100 0.0078125, (2, 2, 0.007812”
0.125, (0.03125, (0.125, 0.0078125, 2, 2, 0.007812;7
0.0078125, 1000) 1000) 0.0078125, 0.03125, 0.00781257
0.01, 2) 0.0078125, 100, 0.01) : ’
0.01, 64) 100, 0.01,
o 0.1)
100
100
100 96.5517 99.0741 100
100 99.0741 99.0741 93.1034 98.1481 100
100 98.1481 98.1481 100 100 100
100 100 100 96.4286 99.0654 (0.000488281,
mfeat-kar 100 99.0654 99.0654 96.4901 99.0697 0.000488281,
2, 2 99.0697 99.0697 (2, 2, (8, 8, 0.000488281,
0 60%8125 (0.0078125, (0.0078125, 2, 2, 8, 8, 0.000488281,
0'01 2) ’ 1000) 100) 0.125, 128, 0.00195312,
o 0.01, 16) 100, 0.01) 500,
0.01,
0.0001)
96.5517 gzg;iz
96.5517 95.7321 93.1034 106
'93'1034 98.3329 97.4576 93.1034 100 97 3451
106 98.3051 94.9153 98.1818 96.4286 97'3795
06,4986 98.3051 100 95.5752 96.4901 (0.0078125
mfeat-mor 96‘4901 98.3051 97.3913 95.696 (0.03125, 0 607812r ’

' 98.3051 97.4245 (2, 2, 0.03125, ' o
(8, 8, 0.0078125,
0.5, 0.01 (32, 2, 2,2, 0.03125, 0.0078125

Tl 1000) 50) 0.5, 0.01, 0.03125, ' ’
0.125) 0.03125,
0.125) 0.125, 100,
0.001) 100, 0.001,
' 0.1)
99.1071 98.2143 }8(?
100 100 100 100
100 98.4375 96.9231
100 100 100 99.2126 98.4375 100
100 100 100 99.1031 98.1981 100
100 100 : . 0.0000305176
. 100 0.0078125 0.03125
mfeat-pix 100 100 0.0000305176
0.125 0.0078125 0.03125
100 100 . 0.0000305176
0.125 0.0078125 0.03125
128 128 . 0.0000305176
0.0078125 500 1000 0.0078125 0.03125 0.00012207
0.01 0.0078125 0.125 1'00
8 0.01 100 0.001
16 0.001 '

0.0001




Dataset SVM-2K [4] VI_TRVFL [10] | V2.TRVFL [10] | MVIWSVM [5| | MvITRVFL PMVTRVFL
100
100 100 100
100 100 100
}8(? 100 100 100 100 100
100 100 100 100 100 100
100 100 100 100 100 (0.0078125,
mfeat-zer 100 100 100 (0.0078125, (0.03125, 0.03125,
(05,05 100 100 0.0078125, 0.03125, 0.0078125,
00078195 (0.03125, (0.03125, 0.0078125, 0.03125, 0.03125,
001, 0.5) 1000) 50) 0.0078125, 0.03125, 0.125,
Hh D 0.0078125, 0.0078125, 100,
0.01, 8) 0.01, 100) 0.01,
0.1)
91.4079
o
S?;gzg 92.1325 97.1014
, . . 0n nien
87.8468 89.2857 88.5714 94.0299 98.5507 93.0556
98.5507 , 93.1507 95.0355
‘ 92.8571 94.2857 92.6471 ‘
89.4737 95.7746 91.2304
92.8571 91.6667 89.9275
. 93.7931 91.9087 (0.03125,
iono 92.8571 92.9577 (0.125,
87.1922 (0.5, 0.5, 0.03125,
92.8571 92.967 0.125,
(8, 8, @ @ 0195 0.5, 0.5, 0.03125,
0.0078125, 500) 100) 0‘12;’ 0.0078125, 0.03125,
0.01, 2) 05 001 0.01, 0.0078125,
8 100) 100, 0.01
0.01)
92.8602 93.7076 96.2076
92.5 92.5 975
gg.nog 96.25 96.25 90.2439 92.5 ggfggl
004762 97.5 97.5 91.358 92.5 06,1059
: 92.8571 92.8571 92.8595 93.6998 :
. 92.6829 c - f g (0.0078125,
ecoli 01106 95.122 95.122 (0.03125, (0.03125, 00078125
: 95.1503 95.1503 0.03125, 0.03125, : '
(0.5, 0.5, : : 0.0078125,
00078195 (0.5, (8, 0.03125, 0.03125, 00078125
001 2) 50) 20) 0.03125, 0.03125, 0.5 o1
Hh 0.0078125, 0.125, 160%’0
0.01, 16) 100, 0.001) 0.0001, 0.1)
-
72.2403 gi'ggé?
76,6234 53.5714 79.6537 75
: 64.7059 69.7479 83.3333 71.4286 2
71.4286 69.2308
T6.0231 50 57.1429 65.2174 83.3333 7o 5041
: 66.6667 72.7273 69.7863 76.9231 :
74.0741 (0.0078125,
sonar 57.1429 64 (0.007813, 79.2279
76.4471 0.0078125,
ol 57.735 64.4658 0.007813, (0.5, 0.5,
(32, 32, i 0.0078125,
O 00rs125 (32, (8, 0.007813, 0.5, 0.5, 00078125
001, 2) 100) 200) 0.007813, 0.03125, 00078125,
e 0.007813, 100, 0.01) o '
0.01, 8) 500, 0.001,
P 0.0001)
77.0422 211'0813;;7
73.8143 73.7131 73.4177 111
56.962 71.0412 72.2483 60.7595 66.6667 757396
76.2712 49.3671 54.4304 70.5882 69.8795 o1 5355
65.2174 78 74.1379 65.3061 76.9569 (0'00(‘)’:88281
pima 71.8649 60.4651 62.7737 72.566 (0.03125, 0000188281,
(128, 62.0535 63.5244 (0.5, 0.5, 0.03125, : '
0.000488281,
128, @, (0.5, 0.5, 0.5, 0.03125, 0000485251
0.03125, 200) 50) 0.0078125, 0.03125, 000195312,
0.01, 2) 0.01, 16) 0.03125, ' ’
100, 0.01) 500, 0.01,
» 0.0001)
97.8261
ggég;g 95.6522 95.6522
97.8261 , ) ' 100 100
97.9167 95.8333 95.6522
95.6522 97.7778 97.7778
95.8333 91.6667 95.6522
100 97.8019 97.8019
97.7778 100 100 96.1009 (0.0078125 (2048
wine : 97.8723 95.6522 (0.0078125, : 9 ’
97.8019 0.0078125, 2048,
97.8945 95.7427 0.0078125,
(2 2, (0.125 (128 0.0078125 0.0078125, 2048,
0.0078125, 20) 50) 0.0078125. 0.0078125, 2048,
0.01, 0.5) 0 : d 0.125, 0.01, 2048,
0.0078125, 100) 100, 0.01
0.01, 8) e

0.0001)




Dataset SVM-2K [ V1_TRVFL [10] | V2.TRVFL [10] | MvIWSVM [5] | MvTRVFL PMvTRVFL
100
100
100 99.2188 100 100
100 100 100 100 100 100
100 100 100 66.6667 100 100
100 100 80 100
ecoli-0-2-6- 188 100 100 99.2157 100 500%%8112255
7_v8.3-5 100 100 (0.5, 0.5, (0.5, 0.5, : '
(2,2, @ 05 s 0 s 0 0.0078125,
s -9, .9, 0.9, .5, 0.5,
0.0078125, 100) 200) 0.0078125, 0.0078125, 0.0078125,
0.01, 0.5) 001, 8) 100, 0.01) 0.0078125,
o e 100, 0.01,
0.1)
71.4286 85.7143
42.8571 71.4286
85.7143
85.7143 78.5714 85.7143 100 71.4286 Loo.
71.4286 60 83.3333
57.1429 71.4286 , 100
100 0 " 65.4654 03,9333 84.5154
ecoli-0-4- 83.3333 72.7273 83.3333 (00078125, 84.5154 (00078125,
o 84.5154 0.0078125, 0.0078125,
6_vs_5 75.5929 84.5154 (0.5, 0.5,
(32, 32, 0125 0125 0.0078125, 0non 0.0078125,
0.0078125, 100) 200) 0.0078125, 000125 0.0078125,
0.01, 0.5) 0.0078125, 100 001‘;’ 0.0078125,
0.001, o 100, 0.01,
0.125) 0.1)
TTITT8 }3{?
55.5556 100
[
‘1’360741 100 100 100 100 188
%0 100 100 71.4286 100 100
1 1 4.5¢ 1
94.7368 00 00 745356 00 (0.0078125,
new- 99,0697 100 100 (0.00195312, 100 0.0078195
thyroid1 : 100 100 0.00195312, (0.5, 0.5, : 2
(8, 8, 0.0078125,
0008195 @, (0.5, 0.00195312, 0.5, 0.5, 00078125
001, 05) 1000) 1000) 0.00195312, 0.0078125, 00078125,
S 0.125, 0.001, 100, 0.01) ' >
0.125) 10, 0.01,
: 0.1)
93.7603
90 92.9339 93.7603
3471
333 7 93.7705 93.7705 75 90 90
60,2308 90 90 81.8182 64.2857 75
28,2600 75 75 93.6849 75 81.8182
led7digit-0- | o7 o 81.8182 81.8182 (0.03125, 92.8876 93.6849
2-4-5-6-7-8- o3 82.1584 82.1584 0.03125, @, 2, (0.5, 0.5,
9vs 1 5 0.01 (0.5, (2, 0.03125, 2,2, 0.5, 0.5,
A 20) 200) 0.03125, 0.03125, 8, 100,
0.03125, 100, 0.01) 0.0001, 0.01)
0.01, 2)
96.8148
96.2963
95.8889 95.8889 ,
gg;;és 95.9064 96.4425 94.4444 94.4444 ggiggg
06,2063 94.4444 98.1481 96.2264 96.2264 06,8131
96,2063 96.2264 92.9825 95.3271 95.3271 (0125
votes 068151 95.3271 95.4955 95.878 95.878 0135
2 95.3313 95.5304 (8, 8, (8, 8, o125,
= (128, (0.03125, 8,8, 8,8, B
0.0078125, 0.125,
50) 500) 0.5, 0.01, 0.125,
0.01, 2) 128) 001, 52) 0.03125,
o 100, 0.001,
0.05)
97.5641
461 .692:¢
98.8462 95.7692 gz gg 3? g; 3‘1’ 8‘;
97.6923 96.5649 98.4733 99.2308 oo 08,4496
100 93.1298 96.9466 97.7273 08,4375 o7 564
98.8327 100 100 98.4733 08,4107 (0'(‘)’019r312
wdbe 98.8394 96.4427 98.4496 95.7067 o SO0
(0.5, 0.5, 0.00195312,
(128, 96.5038 98.4614 @, 2,
0.5, 0.5, 0.00195312,
128, (32, (0.125, 2,2, 0125 000195312
8, 0.01, 1000) 100) 0.0078125, oo, o1
s 129,
2 001, 64) 0.01) 500, 0.0001,

0.45)




Now, the F-statistic is calculated as:

(17 — 1) x 36.7127

F =
R Tx (6 —1) — 36.7127

= 12.0521

Since we are evaluating 17 models over 6 datasets, the
degrees of freedom Fgr are (n —1) =5 and (n — 1)(M —
1) = 80. At a significance level of o = 0.05, the critical
F-value Fj go is 2.3287. Given that Fpr > Forig, we reject
the null hypothesis, which means there’s strong evidence
that the classifiers perform differently from one another.

To figure out which models truly perform differently
from each other, we use the Nemenyi post-hoc test. This
involves calculating something called the critical differ-
ence (CD), which tells us how big the gap in performance

needs to be for it to count as:

n(n +1)

CD =gq, - i

(3)
Substituting ¢, = 2.598, n = 6, and M = 15, we
obtain:

6-7

D=2. 4/ ——= = 1.6671.
C 998 615 667

This critical difference value of 1.6671 allows us to vi-
sually compare the model rankings using the Nemenyi
graph. Nemenyi test shows that PMvTRVFL significantly
outperforms other existing models and their pairwise dif-
ferences exceed the critical difference CD.

CcD

6 5 4 3 2 1
‘ .
| |
SVM-2K | ‘ MvTWSVM
V2_TRVFL
W1 TRWFL
]
MVTRVFL

FIGURE III: NEMENYI TEST GRAPH REPRESENTATION ON VARIOUS CLASSIFIERS

The following conclusions can be drawn from the above
tests:

e The differences between the average rank of
all models, SVM-2K, V1.TRVFL, V2. TRVFL,
MvTWSVM, and MvTRVFL compared to the pro-
posed PMvTRVFL are 3.38, 1.56, 1.65, 2.94, and
1.09 respectively, all of which exceed the critical
difference CD = 1.6671 in most cases. Hence,
PMvTRVFL demonstrates superior generalization
performance over other models based on average
rank.

e Out of 17 datasets, the proposed PMvTRVFL
achieves the best or second-best rank in 13 datasets,
clearly indicating its consistent and robust classifi-
cation capability across diverse domains. Figure [[T]]

provides a statistical comparison of the six classi-
fiers, highlighting the superior rank of PMvTRVFL.
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