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A Mathematical Formulations of
Related Models

A.1. Support Vector Machine (SVM)

SVM aims to find the maximum-margin hyperplane
separating two classes [1]. Let us consider training data
x ∈ Rn×d with input weight w ∈ Rn×d and bias b ∈ Rn×1.
Taking slack variable ξ ∈ Rn×1 the primal optimization
problem becomes:

min
w,b,ξ

1

2
∥w∥2 + C

n∑
j=1

ξi (1)

s.t. yi(w
⊤
i xi + bi) ≥ 1− ξi, ξi ≥ 0.

The final decision function of separating hyperplane for a
given data u will be:

Class(u) = sign(w⊤ ∗ u+ b). (2)

A.2. Twin Support Vector Machine (TWSVM)

TWSVM [2,3] constructs two non-parallel hyperplanes
such that each is positioned closer to one class and farther
from the other. Unlike the standard SVM, which involves
solving a single large Quadratic Programming Problem
or QPP, TWSVM formulates and solves two smaller-sized
QPPs independently. Given a set of training samples from
two classes, we partition the data x into positive and neg-
ative classes. Accordingly, we denote the positive class
samples by A ∈ RmA×d and the negative class samples by
B ∈ RmB×d, where e represents a column vector of ones
with appropriate dimension [2]. The primal problem of
TWSVM for the positive class is given by:

min
wA,bA,ξ

1

2
∥AwA + eAbA∥2 + C1e

⊤
Bξ (3)

s.t. − (BwA + eBbA) + ξ ≥ eB , ξ ≥ 0.

Similarly for the negative class, it is given as:

min
wB ,bB ,ξ

1

2
∥BwB + eBbB∥2 + C2e

⊤
Aξ (4)

s.t. (AwB + eAbB) + ξ ≥ eA, ξ ≥ 0.

To classify a new sample u, we have to compute the func-
tion as:

Class(u) = arg min
i=A,B

|w⊤
i ui + bi|
∥wi∥

. (5)

A.3. Support Vector Machine with Two View
Learning (SVM-2K)

In the SVM-2K [4] model, we work with data that has
two different views or perspectives. For example, two sets
of features describing the same object. Each view is rep-
resented as a matrix: x(1) for view A and x(2) for view B,
where each row contains the feature values for one train-
ing example. We have a total ofm training examples, and
their class labels are stored in a label vector y. The model
learns a set of weights w(1), w(2) and bias terms b(1), b(2)

for each view.

To handle situations where data points aren’t perfectly
separable, the model uses slack variables ξ(1), ξ(2), and η.
These allow for some error in classification and disagree-
ment between the two views. The term ϵ sets a tolerance
level for how much the predictions from the two views are
allowed to differ. e ∈ Rm×1 be the vector of ones. Lastly,
the constants C1, C2, and D help balance the trade-offs
between accuracy, model complexity, and how closely the
two views should agree during training. Let the primal
form for a given data is given as:

min
w(1),w(2),b(1),b(2),

ξ(1),ξ(2),η

1

2
∥w(1)∥2 + 1

2
∥w(2)∥2 + C1e

⊤ξ(1)+

C2e
⊤ξ(2) +De⊤η

(6)
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s.t. |x(1)w(1) + b(1)e− x(2)w(2) − b(2)e| ≤ η + ϵe,

y ∗ (x(1)w(1) + b(1)e) ≥ e− ξ(1),

y ∗ (x(2)w(2) + b(2)e) ≥ e− ξ(2),

ξ(1), ξ(2), η ≥ 0.

The equation for final classifier for SVM-2K becomes for
m samples:

f (1)(x) =

m∑
j=1

g
(1)
i κ(1)(xi, x) + b(1)

f (2)(x) =

m∑
j=1

g
(2)
i κ(2)(xi, x) + b(2)

f(x) =
1

2

(
f (1)(x) + f (2)(x)

)
h(x) = sign(f(x)) (7)

A.4. Multi-view Twin Support Vector Machine
(MvTWSVM)

Multi-view Twin SVM [5, 6] extends the traditional
Twin SVM by incorporating multi-view learning, which
improves the model’s ability to analyze data and effec-
tively manage heterogeneous information from multiple
sources [7]. Given the source input data x, let x(1), x(2)

be the dataset of two views i.e. view 1 and view 2 and
A(1), B(1) be the positive/negative samples from view 1
, A(2), B(2) be positive/negative samples from view 2,
A(1) = [A(1) eA], B

(1) = [B(1) eB ], A
(2) = [A(2) eA],

B(2) = [B(2) eB ], w
(1)
A , w

(2)
A are classifiers for positive

class, w
(1)
B , w

(2)
B are classifiers for negative class, Slack

variables ξA, ξB , η for positive class; ζ(1), ζ(2), δ for neg-
ative class and Regularization constants are C1, C2, D for
positive and D1, D2, H for negative class respectively.

The primal problem of MvTWSVM for the first hy-
perplane is given by:

min
w

(1)
A ,w

(2)
A ,ξA,ξB ,η

1

2
∥A(1)w

(1)
A ∥2 + 1

2
∥A(2)w

(2)
A ∥2+

C1e
⊤
BξA + C2e

⊤
BξB +De⊤Aη (8)

s.t. |A(1)w
(1)
A −A(2)w

(2)
A | ≤ η,

−B(1)w
(1)
A + ξA ≤ eB ,

−B(2)w
(2)
A + ξB ≤ eB ,

ξA, ξB , η ≥ 0.

Similarly for the second hyperplane it is given by:

min
w

(1)
B ,w

(2)
B ,ζ(1),ζ(2),δ

1

2
∥B(1)w

(1)
B ∥2 + 1

2
∥B(2)w

(2)
B ∥2+

D1e
⊤
Aζ

(1) +D2e
⊤
Aζ

(2) +He⊤Bδ

(9)

s.t. |B(1)w
(1)
B −B(2)w

(2)
B | ≤ δ,

−A(1)w
(2)
B + ζ(1) ≤ eA,

−A(2)w
(2)
B + ζ(2) ≤ eA,

ζ(1), ζ(2), δ ≥ 0.

Let test point be u(1) and u(2), consider
u(1) = [u(1), e] and u(2) = [u(2), e], then

d1 = 1
2

(
|u(1)⊤w(1)

A |+ |u(2)⊤w(2)
A |

)
and d2 =

1
2

(
|u(1)⊤w(1)

A |+ |u(2)⊤w(2)
B |

)
. Then equation for sepa-

rator hyperplane is stated as:

Class(u) =

{
+1, if d1 < d2

−1, otherwise
(10)

A.5. Random Vector Functional Link (RVFL)

RVFL [8] is a single-layer feedforward neural network
that enhances input features using randomized hidden
nodes and directly connects the input to the output for
better generalization.

Given a dataset with m training samples [x Y ] or
{(xi, yi)}mj=1, where xi ∈ Rd, yi ∈ {−1,+1}, the RVFL

network output is computed as θ = [θ1, θ2, . . . , θm]T ∈ Rm

be the output weights, Z = [x Zx] ∈ Rm×2d be output
from enhancement layer and original features. Here Zx =
w⊤ ∗ x+ b for input weights w ∈ Rm×d and b ∈ Rd×1 for
the input feature x.

The regularized least squares objective is:

min
θ

∥Zθ − Y ∥2 + λ∥θ∥2. (11)

where Y = [y(1), y(2), . . . , ym]T and λ > 0 is a regulariza-
tion parameter.

A.6. Twin Random Vector Functional Link
(TRVFL)

TRVFL [9, 10] extends the RVFL model by training
two independent RVFLs to construct two non-parallel hy-
perplanes, each closer to one class and farther from the
other, similar to the Twin SVM formulation.

Let, A and B are positive and negative class samples
respectively from the input data x. ZA ∈ RmA×d be the
augmented feature matrix of hidden-layer output and in-
put for positive class, ZB ∈ RmB×d be the augmented
feature matrix for negative class, θA, θB ∈ Rd be output
weight vectors for two hyperplanes, ξA ∈ RmA , ξB ∈ RmB

are slack variables, eA, eB be vectors of ones with ap-
propriate dimension and C,D > 0 be the regularization
parameters.

For a given sample primal optimization problems are



stated as:

min
θA,ξB

1

2
∥ZAθA∥2 + Ce⊤BξB (12)

s.t. − ZBθA ≥ eB − ξB .

Similarly for the negative class as:

min
θB ,ξA

1

2
∥ZBθB∥2 +De⊤AξA (13)

s.t. ZAθB ≥ eA − ξA.

Now, the final weight vectors θA and θB are stated as θA =
−(Z⊤

AZA+ϵI)−1Z⊤
BλA and θB = (Z⊤

BZB+ϵI)−1Z⊤
AλB ,

where ϵ > 0 is a small ridge term for stability. Given
a test sample u with final augmented feature vector Zu,
assign the label:

Class(u) = arg min
j=A,B

|θ⊤j Zu|
∥θj∥

. (14)

A.7. Multi View Twin Random Vector Func-
tional Link (MvTRVFL)

The MvTRVFL model improves classification by map-
ping multi-view inputs to a high-dimensional space using
random features, enabling better class separation. It con-
structs separate hyperplanes for each class and integrates
original and transformed features to capture view-specific
and inter-view information, resulting in robust and gen-
eralizable performance across diverse datasets.

Let x(j) be the input data for view j for a given
sample x and A(j), B(j) are positive and negative sam-

ples respectively from input data x(j). Suppose Z
(j)
A ∈

RmA×2d be augmented matrix Z
(j)
A = [x(j)′ Z

(j)′
A ] where

Z
(j)′
A = [(w

(j)⊤
A ∗A(j) + b

(j)
A ) A(j)] for input weights w

(j)
A

and input bias b
(j)
A for positive class of view j. Also

x(j)′ = [(w(j)⊤ ∗ x(j) + b(j)) x(j)] for input weights w(j)

and input bias b(j). The optimization problem for the
positive class is formulated as:

min
θ
(j)
A ,ξ(j),α(j)(k)

1

2

v∑
j=1

∥Z(j)
A θ

(j)
A ∥2 + C1

v∑
j=1

e⊤Bξ
(j)+

C2

v∑
j=1

v∑
j<k

e⊤Aα
(j)(k) (15)

s. t. |Z(j)
A θ

(j)
A − Z

(k)
A θ

(k)
A | ≤ α(j)(k),

− Z
(j)
B θ

(j)
A ≥ eB − ξ(j),

where, ξ(j) ≥ 0, α(j)(k) ≥ 0

Similarly for the negative class, the primal optimization

problem is given as:

min
θB ,χ(j),γ(j)(k)

1

2

v∑
j=1

∥Z(j)
B θ

(j)
B ∥2 +D1

v∑
j=1

e⊤Aχ
(j)+

D2

v∑
j=1

v∑
j<k

e⊤Bγ
(j)(k) (16)

s. t. |Z(j)
B θ

(j)
B − Z

(k)
B θ

(j)
B | ≤ γ(j)(k),

− Z
(j)
A θ

(j)
B ≥ eA − χ(j),

where, χ(j) ≥ 0, γ(j)(k) ≥ 0.

The objective function for separating hyperplane for
an example data u(j), input weights w(j) and input bias
b(j) of view j becomes:

Z(j)
u = [u(j) Z(j)′

u ], where Z(j)′
u = w(j)⊤u(j) + b(j)

(17)

Class(u) =

{
+1, if

∣∣∣∑v
j=1 θ

(j)
A Z

(j)
u

∣∣∣ ≤ ∣∣∣∑v
j=1 θ

(j)
B Z

(j)
u

∣∣∣
−1, otherwise

(18)

B PMvTRVFL Derivations

B.1. Linear PMvTRVFL

The extended MvTRVFL model with pinball loss is
formulated as:

min
θ
(j)
A ,ξ

(j)
A ,ξ

(j)
B ,α(j)(k)

1

2

v∑
j=1

∥Z(j)
A θ

(j)
A ∥2

+ C1

v∑
j=1

e⊤B(ξ
(j)
A + ξ

(j)
B )

+ C2

v∑
j=1

v∑
j<k

e⊤Aα
(j)(k) (19)

s.t. |Z(j)
A θ

(j)
A − Z

(k)
A θ

(k)
A | ≤ α(j)(k),

− Z
(j)
B θ

(j)
A ≥ eB − ξ

(j)
A ,

− Z
(j)
B θ

(j)
A ≤ eB +

1

τ
ξ
(j)
B ,

where, ξ
(j)
A ≥ 0, ξ

(j)
B ≥ 0, α(j)(k) ≥ 0, τ ≥ 0.

To derive the dual, we introduce Lagrange multipliers:

β
(j)(k)
1 , β

(j)(k)
2 ∈ RmA for equality constraints, η

(j)
1 , η

(j)
2 ∈

RmB for inequality constraints related to ξ
(j)
A and ξ

(j)
B ,

λ
(j)
1 , λ

(j)
2 for non-negativity of slack variables, and σ(j)(k)

for non-negativity of α(j)(k). The Lagrangian is then for-
mulated accordingly for the positive class as:



L =
1

2

v∑
j=1

∥Z(j)
A θ

(j)
A ∥2 + C1

v∑
j=1

e⊤B

(
ξ
(j)
A + ξ

(j)
B

)
+ C2

v∑
j=1

v∑
j<k

e⊤Aα
(j)(k)

−
v∑

j=1

v∑
j<k

β
(j)(k)⊤
1

(
α(j)(k) − Z

(j)
A θ

(j)
A + Z

(k)
A θ

(k)
A

)
−

v∑
j=1

v∑
j<k

β
(j)(k)⊤
2

(
α(j)(k) + Z

(j)
A θ

(j)
A − Z

(k)
A θ

(k)
A

)
−

v∑
j=1

η
(j)⊤
1

(
−Z(j)

B θ
(j)
A − eB + ξ

(j)
A

)
−

v∑
j=1

η
(j)⊤
2

(
Z

(j)
B θ

(j)
A + eB +

1

τ
ξ
(j)
B

)

−
v∑

j=1

λ
(j)⊤
1 ξ

(j)
A −

v∑
j=1

λ
(j)⊤
2 ξ

(j)
B −

v∑
j=1

v∑
j<k

σ(j)(k)α(j)(k).

(20)

Now, to remove Lagrangian multipliers we have to ap-
ply KKT condition so we need to obtain partial deriva-
tives of the above created Lagrangian form.

∂L

∂θ
(j)
A

= Z
(j)⊤
A Z

(j)
A θ

(j)
A +

v∑
j<k

Z
(j)⊤
A β

(j)(k)
1 −

v∑
j<k

Z
(j)⊤
A β

(j)(k)
1

+ Z
(j)⊤
B η

(j)
1 − Z

(j)⊤
B η

(j)
2 = 0 (21)

∂L

∂θ
(k)
A

=

v∑
j<k

−Z(k)⊤
A β

(j)(k)
1 +

v∑
j<k

Z
(k)⊤
A β

(j)(k)
2 = 0 (22)

∂L

∂ξ
(j)
A

= C1eB − η
(j)
1 − λ

(j)
1 = 0 (23)

∂L

∂ξ
(j)
B

= C1eB − 1

τ
η
(j)
2 − λ

(j)
2 = 0 (24)

∂L

∂α(j)(k)
= C2eA − β

(j)(k)
1 − β

(j)(k)
2 − σ(j)(k) = 0 (25)

Solving for θ
(j)
A for view j to obtain the dual formula-

tion:

θ
(j)
A = (Z

(j)⊤
A Z

(j)
A )−1

 v∑
j<k

Z
(j)⊤
A

(
−β(j)(k)

1 + β
(j)(k)
2

)
− (Z

(j)⊤
A Z

(j)
A )−1

(
Z

(j)⊤
B

(
η
(j)
1 − η

(j)
2

))
(26)

Although the formula seems complex. So, to simplify
the things, we give following definitions for any view j:

A(j) =

 A1,1 · · · A1,d

...
. . .

...
AmA,1 · · · AmA,d

 ,

B(j) =

 B1,1 · · · B1,d

...
. . .

...
BmB ,1 · · · BmB ,d

 ,

A(j) =
[
A(j) (w⊤

A ∗A(j) + b
(j)
A )

]
,

B(j) =
[
B(j) (w⊤

B ∗B(j) + b
(j)
B )

]
,

x(j) =
[
x(j) (w⊤ ∗ x(j) + b(j))

]
,

Z
(j)
A = A(j) ∗ x(j)⊤ (27)

Z
(j)
B = B(j) ∗ x(j)⊤ (28)

θ
(j)
A =

 θ+1
...

θ+mA

 , θ
(j)
B =

 θ−1
...

θ−mB


Let us define ζ(j) =

(∑v
j<k Z

(j)⊤
A

(
−β(j)(k)

1 + β
(j)(k)
2

))
−

(
Z

(j)⊤
B

(
η
(j)
1 − η

(j)
2

))
. Then after applying KKT con-

ditions we get the dual of the primal form of positive class
as:

min
ζ(j),η

(j)
1 ,η

(j)
2

1

2

v∑
j=1

(
ζ(j)⊤

(
Z

(j)⊤
A Z

(j)
A

)−1

ζ(j)
)

− 1

2

v∑
j=1

(
η
(j)
1 − η

(j)
2

)⊤
eB (29)

s.t. 0 ≤ η
(j)
1 , η

(j)
2 ≤ C1eB ,

− C2τeA ≤ β
(j)(k)
1 , β

(j)(k)
2 ≤ C2eA.

In the similar manner we can obtain the dual form for
negative class also as:

θ
(j)
B = (Z

(j)⊤
B Z

(j)
B )−1

 v∑
j<k

Z
(j)⊤
B

(
−κ(j)(k)1 + κ

(j)(k)
2

)
− (Z

(j)⊤
B Z

(j)
B )−1

(
Z

(j)⊤
A

(
ϕ
(j)
1 − ϕ

(j)
2

))
(30)

Let us define δ(j) =
(∑v

j<k Z
(j)⊤
B

(
−κ(j)(k)1 + Z

(j)⊤
B κ

(j)(k)
2

))
−
(
Z

(j)⊤
A

(
ϕ
(j)
1 − ϕ

(j)
2

))
. Then in similar manner we can

obtain dual of the primal form for negative class as:

min
δ(j),ϕ

(j)
1 ,ϕ

(j)
2

1

2

v∑
j=1

(
δ(j)⊤

(
Z

(j)⊤
B Z

(j)
B

)−1

δ(j)
)

(31)



−
v∑

j=1

((
ϕ
(j)
1 − ϕ

(j)
2

)⊤
eA

)
s.t. 0 ≤ κ

(j)(k)
1 , κ

(j)(k)
2 ≤ D2eB ,

− τD1eA ≤ ϕ
(j)
1 , ϕ

(j)
2 ≤ D1eA.

where, κ
(j)(k)
1 , κ

(j)(k)
2 , ϕ

(j)
1 , ϕ

(j)
2 be Lagrangian

multipliers for negative class.

B.2. Kernel-PMvTRVFL

The kernel-PMvTRVFL can be stated as:

min
θ
(j)
A ,ξ

(j)
A ,ξ

(j)
B ,α(j)(k)

1

2

v∑
j=1

∥∥∥Kr⟨A(j)⊤, Z
(j)⊤
A ⟩θ(j)A

∥∥∥2
+ C1

v∑
j=1

e⊤B(ξ
(j)
A + ξ

(j)
B )

+ C2

v∑
j=1

v∑
j<k

e⊤Aα
(j)(k)

s.t. |Kr⟨A(j)⊤,Z
(j)⊤
A ⟩θ(j)A −Kr⟨A(k)⊤, Z

(k)⊤
A ⟩θ(k)A |

≤ α(j)(k),

−Kr⟨B(j)⊤,Z
(j)⊤
B ⟩θ(j)A ≥ eB − ξ

(j)
A ,

−Kr⟨B(j)⊤,Z
(j)⊤
B ⟩θ(j)A ≤ eB +

1

τ
ξ
(j)
B ,

where, ξ
(j)
A ≥ 0, ξ

(j)
B ≥ 0, α(j)(k) ≥ 0, τ ≥ 0.

The basic description of Kernel-PMvTRVFL is:

1. The regularization term

1
2

∑v
j=1

∥∥∥Kr⟨A(j)⊤, Z
(j)⊤
A ⟩θ(j)A

∥∥∥2 controls the model

complexity by penalizing large weights in the Re-
producing Kernel Hilbert Space (RKHS). The slack

penalty term C1

∑v
j=1 e

⊤
B(ξ

(j)
A + ξ

(j)
B ) handles asym-

metric margin violations for the negative class
using pinball loss. The inter-view consistency
penalty C2

∑v
j=1

∑v
j<k e

⊤
Aα

(j)(k) encourages predic-
tion agreement among different views by penalizing
discrepancies.

2. The inter-view agreement constraint

|Kr⟨A(j)⊤, Z
(j)⊤
A ⟩θ(j)A − Kr⟨A(k)⊤, Z

(k)⊤
A ⟩θ(k)A | ≤

α(j)(k) ensures that predictions from different views
on the same positive samples remain consistent in
the kernel-induced feature space.

3. The lower bound constraint −Kr⟨B(j)⊤, Z
(j)⊤
B ⟩θ(j)A

≥ eB − ξ
(j)
A enforces the minimum required margin

for negative class predictions, ensuring robustness
against under-prediction.

4. The upper bound constraint −Kr⟨B(j)⊤, Z
(j)⊤
B ⟩θ(j)A

≤ eB + 1
τ ξ

(j)
B imposes a quantile-based asymmet-

ric margin, regulating over-prediction based on the

quantile parameter τ .

5. Non-negativity conditions on all slack and auxiliary

variables ξ
(j)
A ≥ 0, ξ

(j)
B ≥ 0, α(j)(k) ≥ 0 and τ ≥ 0

ensure the feasibility of the optimization problem
and the interpretability of the model components.

The formation of Lagrangian form becomes after ap-
plying Lagrangian multipliers for the positive class can be
written as:

L =
1

2

v∑
j=1

∥Kr⟨A(j)⊤, Z
(j)⊤
A ⟩θ(j)A ∥2 + C1

v∑
j=1

e⊤B(ξ
(j)
A + ξ

(j)
B )

+ C2

v∑
j=1

v∑
j<k

e⊤Aα
(j)(k)

−
v∑

j=1

v∑
j<k

β
(j)(k)⊤
1 (α(j)(k) −Kr⟨A(j)⊤, Z

(j)⊤
A ⟩θ(j)A

+Kr⟨A(k)⊤, Z
(k)⊤
A ⟩θ(k)A )

−
v∑

j=1

v∑
j<k

β
(j)(k)⊤
2 (α(j)(k) +Kr⟨A(j)⊤, Z

(j)⊤
A ⟩θ(j)A

−Kr(A
(k)⊤, Z

(k)⊤
A )θ

(k)
A )

−
v∑

j=1

η
(j)⊤
1 (−Kr⟨B(j)⊤, Z

(j)⊤
B ⟩θ(j)A − eB + ξ

(j)
A )

−
v∑

j=1

η
(j)⊤
2 (Kr⟨B(j)⊤, Z

(j)⊤
B ⟩θ(j)A + eB +

1

τ
ξ
(j)
B )

−
v∑

j=1

λ
(j)⊤
1 ξ

(j)
A −

v∑
j=1

λ
(j)⊤
2 ξ

(j)
B −

v∑
j=1

v∑
j<k

σ(j)(k)α(j)(k).

Now, to obtain dual of the problem we have to obtain
partial derivatives of the above created Lagrangian form.

∂L

∂θ
(j)
A

= Kr⟨A(j)⊤, Z
(j)⊤
A ⟩⊤Kr⟨A(j)⊤, Z

(j)⊤
A ⟩θ(j)A

+

v∑
j<k

Kr⟨A(j)⊤, Z
(j)⊤
A ⟩⊤β(j)(k)

1

−
v∑

j<k

Kr⟨A(j)⊤, Z
(j)⊤
A ⟩⊤β(j)(k)

2

+Kr⟨B(j)⊤, Z
(j)⊤
B ⟩⊤η(j)1

−Kr⟨B(j)⊤, Z
(j)⊤
B ⟩⊤η(j)2 = 0

∂L

∂θ
(k)
A

= −
v∑

j<k

Kr⟨A(k)⊤, Z⊤
k ⟩⊤β(j)(k)

1

+

v∑
j<k

Kr⟨A(k)⊤, Z⊤
k ⟩⊤β(j)(k)

2 = 0



∂L

∂ξ
(j)
A

= C1eB − η
(j)
1 − λ

(j)
1 = 0

∂L

∂ξ
(j)
B

= C1eB − 1

τ
η
(j)
2 − λ

(j)
2 = 0

∂L

∂α(j)(k)
= C2eA − β

(j)(k)
1 − β

(j)(k)
2 − σ(j)(k) = 0

∂L

∂θ
(j)
A

= Kr⟨A(j)⊤, Z
(j)⊤
A ⟩⊤Kr⟨A(j)⊤, Z

(j)⊤
A ⟩θ(j)A

+

v∑
j<k

Kr⟨A(j)⊤, Z
(j)⊤
A ⟩⊤β(j)(k)

1

−
v∑

j<k

Kr⟨A(j)⊤, Z
(j)⊤
A ⟩⊤β(j)(k)

2

+Kr⟨B(j)⊤, Z
(j)⊤
B ⟩⊤η(j)1

−Kr⟨B(j)⊤, Z
(j)⊤
B ⟩⊤η(j)2 = 0

(10)

Now, define the kernel matrices as:

Θ
(j)
A =

[
Kr⟨A(j)⊤, Z

(j)⊤
A ⟩, eA

]
and Θ

(j)
B =[

Kr⟨B(j)⊤, Z
(j)⊤
B ⟩, eB

]
.

Solving for θ
(j)
A for view j to obtain the dual formulation:

θ
(j)
A =(Θ

(j)⊤
A Θ

(j)
A )−1

 v∑
j<k

Θ
(j)⊤
A

(
−β(j)(k)

1 + β
(j)(k)
2

)
− (Θ

(j)⊤
A Θ

(j)
A )−1

(
Θ

(j)⊤
B

(
η
(j)
1 − η

(j)
2

))
.

To simplify the things, we give following definitions for
any view j: Let’s say Kernel for a given data is defined
as Kr⟨t⟩ = ψ(t) for any data t.

Kr⟨A(j)⟩ =
[
ψ(w⊤

A ∗A(j) + b
(j)
A ) A(j)

]
,

Kr⟨B(j)⟩ =
[
ψ(w⊤

B ∗B(j) + b
(j)
B ) B(j)

]
,

Kr⟨x(j)⟩ =
[
ψ(w⊤ ∗ x(j) + b(j)) x(j)⊤

]
,

Kr⟨A(j)⊤, Z
(j)⊤
A ⟩ = Kr⟨A(j)⟩ ∗Kr⟨x(j)⟩⊤ (9)

Kr⟨B(j)⊤, Z
(j)⊤
B ⟩ = Kr⟨B(j)⟩ ∗Kr⟨x(j)⟩⊤ (9)

θ
(j)
A =

 θ+1
...

θ+mA

 , θ
(j)
B =

 θ−1
...

θ−mB


Let us define ζ(j) as ζ(j) = (Θ

(j)⊤
A Θ

(j)
A )−1(−Θ

(j)⊤
A β

(j)(k)
1 +

Θ
(j)⊤
A β

(j)(k)
2 −Θ

(j)⊤
B η

(j)
1 +Θ

(j)⊤
B η

(j)
2 ) . Then after apply-

ing KKT conditions we get the dual form of the primal

form of positive class as:

min
ζ(j),η

(j)
1 ,η

(j)
2

1

2

v∑
j=1

(
ζ(j)⊤

(
Θ

(j)⊤
A Θ

(j)
A

)−1

ζ(j)
)

−
v∑

j=1

(
η
(j)
1 − η

(j)
2

)⊤
eB

s.t. 0 ≤ η
(j)
1 , η

(j)
2 ≤ C1eB ,

− C2τeA ≤ β
(j)(k)
1 , β

(j)(k)
2 ≤ C2eA.

In the similar manner for negative class we obtain θ
(j)
B for

view j as:

θ
(j)
B =(Θ

(j)⊤
B Θ

(j)
B )−1

(
Θ

(j)⊤
B

(
−κ(j)(k)1 + κ

(j)(k)
2

))
− (Θ

(j)⊤
B Θ

(j)
B )−1

(
Θ

(j)⊤
A

(
η
(j)
1 − η

(j)
2

))
.

Let us define δ(j) =
(
Θ

(j)⊤
B

(
−κ(j)(k)1 + κ

(j)(k)
2

))
−
(
Θ

(j)⊤
A

(
η
(j)
1 − η

(j)
2

))
. Then in similar manner we can

obtain dual of the primal form for negative class as:

min
δ(j),ϕ

(j)
1 ,ϕ

(j)
2

1

2

v∑
j=1

(
δ(j)

⊤
(
Θ

(j)⊤

B Θ
(j)
B

)−1

δ(j)
)

−
v∑

j=1

((
ϕ
(j)
1 − ϕ

(j)
2

)⊤
eA

)
s.t. 0 ≤ κ

(j)(k)
1 , κ

(j)(k)
2 ≤ D2eB ,

− τD1eA ≤ ϕ
(j)
1 , ϕ

(j)
2 ≤ D1eA.

where, κ
(j)(k)
1 , κ

(j)(k)
2 and ϕ

(j)
1 , ϕ

(j)
2 are

Lagrangian multipliers for negative class.

B.3. Dataset Description

Table I presents the datasets employed in this study,
spanning domains such as handwritten digit recognition,
bioinformatics, and others.Each dataset provides unique
challenges in terms of class distribution, dimensionality,
and modality, making them ideal for evaluating the ro-
bustness of multi-view classifiers. The inclusion of diverse
datasets ensures a comprehensive assessment of the pro-
posed model’s generalization ability across various real-
world applications.

1. Handwritten Digits

This dataset contains features extracted from hand-
written digits (0-9), sourced from Dutch utility maps. Re-
searchers digitized 200 samples for each digit class, result-
ing in a total of 2,000 binary images [11]. Each feature set
captures different aspects of the digit shapes, such as pixel
intensity, frequency domain components, and morpholog-
ical characteristics. This diversity makes the dataset well-
suited for evaluating multi-view learning approaches like
MvTRVFL, which benefit from heterogeneous feature rep-
resentations. These images are described using six dis-



tinct feature sets:

• mfeat-fou: Contains 76 Fourier coefficients repre-
senting character shapes.

• mfeat-fac: Includes 216 profile correlation values.

• mfeat-kar: Provides 64 Karhunen–Loève coeffi-
cients.

• mfeat-pix: Captures 240 average pixel values com-
puted over 2× 3 windows.

• mfeat-zer: Contains 47 Zernike moment features.

• mfeat-mor: Offers 6 features based on morpholog-
ical analysis.

Each file stores all 2,000 patterns in ASCII format, where
each line corresponds to one pattern. The data is orga-
nized sequentially by class, starting with 200 patterns for
digit ‘0’, followed by 200 each for digits ‘1’ through ‘9’.
We have taken 200 samples from a total of (1,7) pairs
from 10 classes for training in first view and applied PCA
for the second view data.

2. UCI Repository Datasets

The UCI Machine Learning Repository is one of the
most widely recognized and reputable sources for bench-
mark datasets within the machine learning research com-
munity. Maintained by the University of California,
Irvine, it provides a diverse collection of datasets suitable
for tasks such as classification, regression, and clustering.

These datasets serve as standardized benchmarks for
evaluating and comparing the performance of various ma-
chine learning algorithms. Owing to its accessibility and
broad coverage of real-world applications, the repository
plays a foundational role in empirical research and the
development of robust machine learning methodologies.
These datasets span multiple domains including biology,
medicine, finance, image recognition, and text processing.
Each dataset typically comes with structured features,
target labels, and metadata including attribute descrip-
tions and source references, making them ideal for model
development, evaluation, and comparison. We have con-
sidered ecoli [12], sonar, wine [13], led7digit-0-2-4-5-6-
7-8-9 vs 1, pima, ecoli-0-2-6-7vs3-5,ecoli-0-4-6vs 5, new-
thyroid1, iono [14], wdbc, and votes datsets for our ex-
periment.

Table I: Dataset Descriptions and View-wise Features

Dataset Domain Instances Features per View
mfeat-fou Handwritten Digits 2000 (200 per class) 76 (Fourier)
mfeat-mor Handwritten Digits 2000 6 (Morphological)
mfeat-fac Handwritten Digits 2000 216 (Profile correlations)
mfeat-zer Handwritten Digits 2000 47 (Zernike moments)
mfeat-kar Handwritten Digits 2000 64 (Karhunen-Loève)
mfeat-pix Handwritten Digits 2000 240 (Pixel averages)
ecoli Bioinformatics 336 7 (Single view)
sonar Signal Processing 208 60 (Single view)
wine Chemistry / Agriculture 178 13 (Single view)
led7digit-0-2-4-5-6-7-8-9 vs 1 Image Analysis 443 7 (after view split)
pima Medical (Diabetes) 768 8 (Single view)
ecoli-0-2-6-7 vs 3-5 Bioinformatics 224 7–8 (after view split)
ecoli-0-4-6 vs 5 Bioinformatics 205 7–8 (after view split)
new-thyroid1 Medical (Thyroid Disease) 215 5 (after view split)
iono Signal Processing 351 34 (Single view)
wdbc Medical (Breast Cancer) 569 30 (Single view)
votes Political / Social 435 16 (Single view)

Figure I: Box plot representation of classifiers used



Figure I shows a box plot that compares how well each
classifier performed in terms of accuracy and consistency.
A box plot—also known as a box-and-whisker plot—is
a simple yet powerful way to visualize how results are
spread out. It helps us quickly see which models per-
formed more steadily and which ones varied more. In
each box, the line in the middle shows the median accu-
racy, giving a sense of the typical performance, while the
top and bottom edges of the box mark the range where the
middle 50% of the results fall, known as the interquartile
range (IQR). This makes it easy to compare how tightly
grouped or spread out the classifiers’ performances were.
The whiskers extend to show the range of the data, ex-
cluding outliers, and help in assessing the variability and
consistency of each classifier’s performance. A smaller box
with shorter whiskers typically indicates higher stability
and less variation in the model’s predictions.

Figure II: Comparison of average ranks between the
proposed model and existing models.

A rank-based comparison of six classifiers evaluated across
17 benchmark datasets is presented in Table ??, where
a lower rank indicates superior performance. The pro-
posed PMvTRVFL model consistently secures top rank-
ings, achieving the lowest overall average rank of 1.73
and delivering the best performance on the majority of
datasets. This demonstrates the model’s robustness, sta-
bility, and excellent generalization capability across di-

verse domains such as signal processing, image analysis,
and medical diagnostics. In contrast, traditional meth-
ods like SVM-2K and MvTWSVM achieve significantly
higher average ranks of 4.67 and 5.12, respectively, indi-
cating comparatively weaker performance. These results
highlight PMvTRVFL’s strength in leveraging multi-view
information more effectively than both single-view and
earlier multi-view classifiers.

Figure II provides a line graph of the average ranks
obtained by each model: SVM-2K 5.12, V1-TRVFL
3.29, V2-TRVFL 3.38, MvTWSVM 4.67, MvTRVFL 2.82,
and PMvTRVFL 1.73. The performance gap between
PMvTRVFL and other models—3.38, 1.56, 1.65, 2.94,
and 1.09, respectively—clearly illustrates its superior and
consistent performance. These rank differences under-
line the model’s effectiveness in applications ranging from
handwritten digit recognition to complex biomedical clas-
sification problems. The consistent top-tier ranking of
PMvTRVFL reinforces its capability in exploiting multi-
view data to achieve highly reliable, adaptable, and gen-
eralized classification outcomes.

Additionally, Table II provides a comprehensive
overview of the classifiers and their associated hyperpa-
rameters, which directly influence learning behavior and
predictive capacity. Key performance metrics such as
AUC, Recall, F1-score, and G-mean are included, offering
deep insight into the models’ ability to handle imbalanced
data and maintain accuracy across datasets. These indi-
cators consistently reflect PMvTRVFL’s superior perfor-
mance, validating its reliability, efficiency, and practical
utility in varied domains.

What makes PMvTRVFL stand out is its smart use
of multiple data views through a twin-network structure,
along with the pinball loss function that helps it han-
dle uneven class distributions by adjusting the margin for
each class. Its consistently high scores in AUC, Recall,
F1-score, and G-mean prove that it not only works well
in theory but also delivers stable and trustworthy results
in real-world scenarios.

C Statistical Analysis

The Friedman test, originally introduced by Friedman
(1937) [15] and further extended by Demšar (2006), is
a non-parametric statistical method used to evaluate the
performance of multiple classifiers across several datasets.
In this study, we apply the Friedman test to assess and
compare the ranks of six classifiers, SVM-2K, TRVFL,
MvTWSVM, MvTRVFL and PMvTRVFL.

The Friedman test statistic χ2
FR is computed using the

following formula:

χ2
FR =

12M

n(n+ 1)

[
n∑

i=1

r̄2i −
n(n+ 1)2

4

]
(1)

whereM is the number of datasets, n is the number of
classifiers, and r̄i is the average rank of the i-th classifier.

To analyze the significance of the result, we use the
F-distribution approximation given by:

FFR =
(M − 1) · χ2

FR

M(n− 1)− χ2
FR

(2)

Substituting the experimental values, we compute:

χ2
FR =

12× 17

6× 7
(5.112 + 3.292 + 3.382 + 4.642 + 2.822

+ 1.732). = 36.7127.



Table II: Performance of different models based on AUC, Recall, Precision, F1-score and Gmean

Dataset SVM-2K [4] V1 TRVFL [10] V2 TRVFL [10] MvTWSVM [5] MvTRVFL PMvTRVFL

AUC
recall
precision
F1-score
Gmean
(C1, C2, D,
epsilon,
sigma)

AUC
recall
precision
F1-score
Gmean
(C, L)

AUC
recall
precision
F1-score
Gmean
(C, L)

AUC
recall
precision
F1-score
Gmean
(C1, C2,
D1, D2,
D, epsilon,
H)

AUC
recall
precision
F1-score
Gmean
(C1, C2,
D1, D2,
alpha,
epsilon,
L)

AUC
recall
precision
F1-score
Gmean
(C1, C2,
D1, D2,
alpha,
epsilon,
L, tau)

mfeat-fou

92.8409
87.5
98.2456
92.562
92.6872
(8, 8, 0.0078125,
0.01, 2)

92.6573
90.7692
95.1613
92.9134
92.9393
(0.125,
20)

91.8881
89.2308
95.082
92.0635
92.1099
(32,
500)

93.6222
89.0625
98.2759
93.4426
93.5111
(0.5, 0.5,
0.5, 0.5,
0.5, 0.01,
32)

92.7131
89.0625
96.6102
92.6829
92.6412
(0.5, 0.5,
0.5, 0.5,
0.0078125,
100, 0.01)

88.1676
89.0625
89.0625
89.0625
88.1631
(0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.0078125,
100, 0.01,
1.000000e-01)

mfeat-fac

99.2537
98.5075
100
99.2481
99.2509
(0.125,
0.125,
0.0078125,
0.01, 2)

100
100
100
100
100
(0.03125,
1000)

100
100
100
100
100
(0.125,
1000)

99.2537
98.5075
100
99.2481
99.2509
(0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.01, 64)

99.2537
98.5075
100
99.2481
99.2509
(2, 2,
2, 2,
0.03125,
100, 0.01)

99.2537
98.5075
100
99.2481
99.2509
(0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.0078125,
100, 0.01,
0.1)

mfeat-kar

100
100
100
100
100
(2, 2,
0.0078125,
0.01, 2)

99.0741
98.1481
100
99.0654
99.0697
(0.0078125,
1000)

99.0741
98.1481
100
99.0654
99.0697
(0.0078125,
100)

96.5517
93.1034
100
96.4286
96.4901
(2, 2,
2, 2,
0.125,
0.01, 16)

99.0741
98.1481
100
99.0654
99.0697
(8, 8,
8, 8,
128,
100, 0.01)

100
100
100
100
100
(0.000488281,
0.000488281,
0.000488281,
0.000488281,
0.00195312,
500,
0.01,
0.0001)

mfeat-mor

96.5517
93.1034
100
96.4286
96.4901
(8, 8,
0.5, 0.01,
0.125)

98.3329
98.3051
98.3051
98.3051
98.3051
(32,
1000)

97.4576
94.9153
100
97.3913
97.4245
(2,
50)

95.7321
93.1034
98.1818
95.5752
95.696
(2, 2,
2, 2,
0.5, 0.01,
0.125)

96.5517
93.1034
100
96.4286
96.4901
(0.03125,
0.03125,
0.03125,
0.03125,
0.125, 100,
0.001)

97.4138
94.8276
100
97.3451
97.3795
(0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.03125,
100, 0.001,
0.1)

mfeat-pix

100
100
100
100
100
0.125
0.125
0.0078125
0.01
8

100
100
100
100
100
128
500

100
100
100
100
100
128
1000

99.1071
100
98.4375
99.2126
99.1031
0.0078125
0.0078125
0.0078125
0.0078125
0.0078125
0.01
16

98.2143
100
96.9231
98.4375
98.1981
0.03125
0.03125
0.03125
0.03125
0.125
100
0.001

100
100
100
100
100
0.0000305176
0.0000305176
0.0000305176
0.0000305176
0.00012207
100
0.001
0.0001



Dataset SVM-2K [4] V1 TRVFL [10] V2 TRVFL [10] MvTWSVM [5] MvTRVFL PMvTRVFL

mfeat-zer

100
100
100
100
100
(0.5, 0.5,
0.0078125,
0.01, 0.5)

100
100
100
100
100
(0.03125,
1000)

100
100
100
100
100
(0.03125,
50)

100
100
100
100
100
(0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.01, 8)

100
100
100
100
100
(0.03125,
0.03125,
0.03125,
0.03125,
0.0078125,
0.01, 100)

100
100
100
100
100
(0.0078125,
0.03125,
0.0078125,
0.03125,
0.125,
100,
0.01,
0.1)

iono

87.8468
98.5507
89.4737
93.7931
87.1922
(8, 8,
0.0078125,
0.01, 2)

89.2857
92.8571
92.8571
92.8571
92.8571
(2,
500)

88.5714
94.2857
91.6667
92.9577
92.967
(2,
100)

89.9379
91.3043
94.0299
92.6471
89.9275
(0.125,
0.125,
0.125,
0.125,
0.5, 0.01
8)

92.1325
98.5507
93.1507
95.7746
91.9087
(0.5, 0.5,
0.5, 0.5,
0.0078125,
0.01,
100)

91.4079
97.1014
93.0556
95.0355
91.2304
(0.03125,
0.03125,
0.03125,
0.03125,
0.0078125,
100, 0.01
0.01)

ecoli

94.1102
95
90.4762
92.6829
94.106
(0.5, 0.5,
0.0078125,
0.01, 2)

96.25
97.5
92.8571
95.122
95.1503
(0.5,
50)

96.25
97.5
92.8571
95.122
95.1503
(8,
20)

92.8602
92.5
90.2439
91.358
92.8595
(0.03125,
0.03125,
0.03125,
0.03125,
0.0078125,
0.01, 16)

93.7076
92.5
92.5
92.5
93.6998
(0.03125,
0.03125,
0.03125,
0.03125,
0.125,
100, 0.001)

96.2076
97.5
92.8571
95.122
96.1989
(0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.25,
10000,
0.0001, 0.1)

sonar

76.6234
71.4286
76.9231
74.0741
76.4471
(32, 32,
0.0078125,
0.01, 2)

64.7059
50
66.6667
57.1429
57.735
(32,
100)

69.7479
57.1429
72.7273
64
64.4658
(8,
200)

72.2403
53.5714
83.3333
65.2174
69.7863
(0.007813,
0.007813,
0.007813,
0.007813,
0.007813,
0.01, 8)

79.6537
71.4286
83.3333
76.9231
79.2279
(0.5, 0.5,
0.5, 0.5,
0.03125,
100, 0.01)

73.0519
64.2857
75
69.2308
72.5241
(0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.0078125,
500, 0.001,
0.0001)

pima

73.8143
56.962
76.2712
65.2174
71.8649
(128,
128,
0.03125,
0.01, 2)

71.0412
49.3671
78
60.4651
62.0535
(2,
200)

72.2483
54.4304
74.1379
62.7737
63.5244
(0.5,
50)

73.7131
60.7595
70.5882
65.3061
72.566
(0.5, 0.5,
0.5, 0.5,
0.0078125,
0.01, 16)

77.0422
73.4177
66.6667
69.8795
76.9569
(0.03125,
0.03125,
0.03125,
0.03125,
0.03125,
100, 0.01)

81.8397
81.0127
71.1111
75.7396
81.8355
(0.000488281,
0.000488281,
0.000488281,
0.000488281,
0.00195312,
500, 0.01,
0.0001)

wine

97.8261
95.6522
100
97.7778
97.8019
(2, 2,
0.0078125,
0.01, 0.5)

97.9167
95.8333
100
97.8723
97.8945
(0.125,
20)

95.8333
91.6667
100
95.6522
95.7427
(128,
50)

96.1019
95.6522
95.6522
95.6522
96.1009
(0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.01, 8)

95.6522
100
97.7778
97.8019
(0.0078125,
0.0078125,
0.0078125,
0.0078125,
0.125, 0.01,
100)

97.8261
95.6522
100
97.7778
97.8019
(2048,
2048,
2048,
2048,
2048,
100, 0.01,
0.0001)



Dataset SVM-2K [4] V1 TRVFL [10] V2 TRVFL [10] MvTWSVM [5] MvTRVFL PMvTRVFL

ecoli-0-2-6-
7 vs 3-5

100

100

100

100

100

(2, 2,

0.0078125,

0.01, 0.5)

100

100

100

100

100

(2,

100)

100

100

100

100

100

(0.5,

200)

99.2188

100

66.6667

80

99.2157

(0.5, 0.5,

0.5, 0.5,

0.0078125,

0.01, 8)

100

100

100

100

100

(0.5, 0.5,

0.5, 0.5,

0.0078125,

100, 0.01)

100

100

100

100

100

(0.0078125,

0.0078125,

0.0078125,

0.0078125,

0.0078125,

100, 0.01,

0.1)

ecoli-0-4-
6 vs 5

85.7143

71.4286

100

83.3333

84.5154

(32, 32,

0.0078125,

0.01, 0.5)

78.5714

57.1429

100

72.7273

75.5929

(0.125,

100)

85.7143

71.4286

100

83.3333

84.5154

(0.125,

200)

71.4286

42.8571

100

60

65.4654

(0.0078125,

0.0078125,

0.0078125,

0.0078125,

0.0078125,

0.001,

0.125)

85.7143

71.4286

100

83.3333

84.5154

(0.5, 0.5,

0.5, 0.5,

0.0078125,

100, 0.01)

85.7143

71.4286

100

83.3333

84.5154

(0.0078125,

0.0078125,

0.0078125,

0.0078125,

0.0078125,

100, 0.01,

0.1)

new-
thyroid1

99.0741

100

90

94.7368

99.0697

(8, 8,

0.0078125,

0.01, 0.5)

100

100

100

100

100

(2,

1000)

100

100

100

100

100

(0.5,

1000)

77.7778

55.5556

100

71.4286

74.5356

(0.00195312,

0.00195312,

0.00195312,

0.00195312,

0.125, 0.001,

0.125)

100

100

100

100

100

(0.5, 0.5,

0.5, 0.5,

0.0078125,

100, 0.01)

100

100

100

100

100

(0.0078125,

0.0078125,

0.0078125,

0.0078125,

0.0078125,

10, 0.01,

0.1)

led7digit-0-
2-4-5-6-7-8-
9 vs 1

93.3471

90

69.2308

78.2609

93.2871

(2, 2,

2, 0.01,

2)

93.7705

90

75

81.8182

82.1584

(0.5,

20)

93.7705

90

75

81.8182

82.1584

(2,

200)

93.7603

90

75

81.8182

93.6849

(0.03125,

0.03125,

0.03125,

0.03125,

0.03125,

0.01, 2)

92.9339

90

64.2857

75

92.8876

(2, 2,

2, 2,

0.03125,

100, 0.01)

93.7603

90

75

81.8182

93.6849

(0.5, 0.5,

0.5, 0.5,

8, 100,

0.0001, 0.01)

votes

96.8148

96.2963

96.2963

96.2963

96.8134

(2, 2,

0.0078125,

0.01, 2)

95.9064

94.4444

96.2264

95.3271

95.3313

(128,

50)

96.4425

98.1481

92.9825

95.4955

95.5304

(0.03125,

500)

95.8889

94.4444

96.2264

95.3271

95.878

(8, 8,

8, 8,

0.5, 0.01,

128)

95.8889

94.4444

96.2264

95.3271

95.878

(8, 8,

8, 8,

0.125,

0.01, 32)

96.8148

96.2963

96.2963

96.2963

96.8134

(0.125,

0.125,

0.125,

0.125,

0.03125,

100, 0.001,

0.05)

wdbc

98.8462

97.6923

100

98.8327

98.8394

(128,

128,

8, 0.01,

2)

96.5649

93.1298

100

96.4427

96.5038

(32,

1000)

98.4733

96.9466

100

98.4496

98.4614

(0.125,

100)

95.7692

99.2308

97.7273

98.4733

95.7067

(2, 2,

2, 2,

0.0078125,

0.01, 64)

98.4615

96.9231

100

98.4375

98.4495

(0.5, 0.5,

0.5, 0.5,

0.125,

100,

0.01)

97.5641

97.6923

99.2188

98.4496

97.564

(0.00195312,

0.00195312,

0.00195312,

0.00195312,

0.125,

500, 0.0001,

0.45)



Now, the F-statistic is calculated as:

FFR =
(17− 1)× 36.7127

17× (6− 1)− 36.7127
= 12.0521

Since we are evaluating 17 models over 6 datasets, the
degrees of freedom FFR are (n− 1) = 5 and (n− 1)(M −
1) = 80. At a significance level of α = 0.05, the critical
F-value F5,80 is 2.3287. Given that FFR > Fcrit, we reject
the null hypothesis, which means there’s strong evidence
that the classifiers perform differently from one another.

To figure out which models truly perform differently
from each other, we use the Nemenyi post-hoc test. This
involves calculating something called the critical differ-
ence (CD), which tells us how big the gap in performance

needs to be for it to count as:

CD = qα ·
√
n(n+ 1)

6M
(3)

Substituting qα = 2.598, n = 6, and M = 15, we
obtain:

CD = 2.598 ·
√

6 · 7
6 · 15

= 1.6671.

This critical difference value of 1.6671 allows us to vi-
sually compare the model rankings using the Nemenyi
graph. Nemenyi test shows that PMvTRVFL significantly
outperforms other existing models and their pairwise dif-
ferences exceed the critical difference CD.

Figure III: Nemenyi test graph representation on various classifiers

The following conclusions can be drawn from the above
tests:

• The differences between the average rank of
all models, SVM-2K, V1 TRVFL, V2 TRVFL,
MvTWSVM, and MvTRVFL compared to the pro-
posed PMvTRVFL are 3.38, 1.56, 1.65, 2.94, and
1.09 respectively, all of which exceed the critical
difference CD = 1.6671 in most cases. Hence,
PMvTRVFL demonstrates superior generalization
performance over other models based on average
rank.

• Out of 17 datasets, the proposed PMvTRVFL
achieves the best or second-best rank in 13 datasets,
clearly indicating its consistent and robust classifi-
cation capability across diverse domains. Figure III
provides a statistical comparison of the six classi-
fiers, highlighting the superior rank of PMvTRVFL.
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