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Chapter 1
Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by progres-
sive memory impairment, cognitive decline, and an individual’s inability to execute
the activities of daily living. It is important to identify AD early because effective
intervention can delay the progression of the disease and increase quality of life for
patients and their families. Recent advances in machine learning and deep learning
provide the capability for automated analysis of neuroimaging data, which assists in
the early and accurate identification of AD. This project demonstrates a multimodal
neuroimaging-based AD diagnostic system based on the ADNI MRI dataset using
ResNet-50 neural network feature extraction along with multiple other advanced
classifiers RVFL and modified RVFLs (such as EDRVFL, TRVFL, Swift Classifier,
and ConvNeXtV2).

1.1 Motivation

Alzheimer’s Disease (AD) is a progressive neurodegenerative condition that steadily
impacts memory, cognition, and behavioral functioning. The increasing elderly pop-
ulation globally increases the prevalence of Alzheimer’s Disease at a rapidly growing
rate, making it a significant public health issue. According to recent clinical studies,
there are millions of people around the globe with AD, and this will increase dra-

matically in coming decades. Despite significant research efforts, AD does not have



a cure, which underscores the significant importance of early and accurate diagnosis.
Early diagnosis allows for timely intervention, slows the progression of the disease,
and improves the quality of life for the patient.

Magnetic Resonance Imaging has become one of the best non-invasive techniques
available to assess structural brain alterations associated with AD; however, the
reading of MRIs relies on expert knowledge in radiology and is often based on a
highly subjective and time-consuming analysis that also suffers from inter-observer
variability. Traditional machine-learning approaches have offered partial solutions,
but there remain challenges associated with capturing the complexity of patterns
associated with neuroimaging.

Despite such advancements, the unification of deep feature extraction with fast,
robust, and generalizable classifiers still remains an open challenge. Specifically,
evolutionary variants of TRVFL can be further optimized to improve generalization
and reduce overfitting, especially in complex neuroimaging tasks. There is, there-
fore, a strong motivation to develop a comprehensive multimodal framework that
will unify ResNet-50-based feature extraction with advanced evolutionary TRVFL
classifiers in the interest of reliable diagnosis of Alzheimer’s Disease using the ADNI
MRI dataset.

These findings motivate the present work, which aims at bridging existing gaps
through using multimodal neuroimaging, advanced deep-learning feature extraction,
and evolutionary classification techniques to be able to reach a more efficient, accu-

rate, and automated AD diagnosis system.

1.2 Problem Statement

The difficulty in diagnosing Alzheimer’s Disease from MRI scans lies in the fact that
there are subtle structural brain changes, high-dimensional data, and a high reliance
on subjective expert interpretation. Most of the traditional models in machine learn-
ing have poor generalization performance when applied to complex neuroimaging
datasets. Though deep learning techniques like ResNet-50 extract meaningful fea-

tures, choosing an efficient classifier with good accuracy is still a main issue. Thus,



this project tries to overcome these shortcomings by developing a robust and reli-
able framework combining deep feature extraction with deep learning and machine

learning models.

1.3 Objectives

The main objectives of this project are as follows:

e To develop an automated Alzheimer’s Disease diagnosis framework using MRI
data from the ADNI dataset.

e To extract deep and discriminative features from MRI scans using the ResNet-

50 architecture.

e To implement and evaluate multiple classifiers, including RVFL, EDRVFL,
TRVFL, Evolutionary TRVFL, Swift Classifier, and ConvNeXtV2.

e To perform hyperparameter tuning for all models to achieve optimal perfor-

mance and ensure fair comparison.

e To compare the performance of all models and determine the most effective
classifier for AD detection using various evaluation metrics such as accuracy,
precision, recall, Fl-score, specificity, sensitivity, ROC-AUC, and confusion

matrix analysis.



Chapter 2

Literature Review and Related
Work

2.1 Multimodal Neuroimaging Based Alzheimer’s
Disease Diagnosis Using Evolutionary RVFL Clas-
sifier (Goel et al., 2023)

Goel et al. [2] proposed a multimodal neuroimaging framework for early Alzheimer’s
Disease (AD) diagnosis using an Evolutionary Random Vector Functional Link
(E-RVFL) classifier. The study combines structural MRI and PET imaging
modalities to capture both anatomical and metabolic alterations associated
with AD progression. Deep and handcrafted features extracted from these
modalities were fused to create a richer and more discriminative feature rep-

resentation.

The novelty of the work lies in the evolutionary optimization of RVFL param-
eters, including weights, biases, and regularization coefficients. This optimiza-
tion strategy enhances model generalization, reduces sensitivity to random
initialization, and improves robustness when handling high-dimensional mul-

timodal data. The E-RVFL classifier demonstrated faster convergence and



superior classification performance.

Experiments conducted on the ADNI dataset showed that the proposed E-
RVFL model outperformed several baseline classifiers, including traditional
RVFL, SVM, and deep CNN-based approaches. The model achieved higher
accuracy, sensitivity, specificity, and F1l-score, highlighting the effectiveness
of combining multimodal imaging with evolutionary learning techniques for

reliable and early Alzheimer’s Disease diagnosis.

2.2 Conv-eRVFL: CNN-Based Ensemble RVFL
Classifier for Alzheimer’s Disease Diagnosis (Sharma

et al., 2023)

Sharma et al. [8] introduced Conv-eRVFL, a hybrid classification framework
that integrates Convolutional Neural Networks (CNN) with an Ensemble Ran-
dom Vector Functional Link (eRVFL) classifier for Alzheimer’s Disease (AD)
diagnosis. The model leverages both structural MRI and PET modalities to
capture complementary anatomical and metabolic biomarkers associated with

neurodegeneration.

In this approach, CNN-based deep feature extraction captures rich spatial
information from neuroimaging data, while the ensemble RVFL classifier en-
hances decision robustness by aggregating outputs from multiple RVFL net-
works. The combination of CNN feature representations with the ensemble
RVFL architecture leads to improved learning stability and better generaliza-

tion in high-dimensional medical imaging environments.

Experiments conducted on the ADNI dataset demonstrated that Conv-eRVFL
outperformed traditional RVFL, standalone CNN classifiers, and other base-
line models. The proposed framework achieved superior results in terms of
accuracy, sensitivity, specificity, and Fl-score. The study highlights the ef-

fectiveness of integrating deep CNN feature extraction with ensemble RVFL



classifiers for reliable, scalable, and efficient Alzheimer’s Disease diagnosis.

2.2.1 Biomarker Models

Early work on Alzheimer’s disease (AD) focused on understanding biomarker
progression. Jack et al. [4] proposed a dynamic model describing the sequence
of pathological changes in AD. The ADNI study [3] further standardized MRI

acquisition and established a widely used benchmark dataset.

2.2.2 Classical ML Approaches

Traditional machine learning techniques relied on handcrafted MRI features.
Fan et al. [1] demonstrated that feature-selected structural MRI measurements
combined with SVMs can effectively classify AD and MCI.

2.2.3 Deep Learning Methods

Deep learning significantly improved MRI feature representation. Suk et al. [9]
introduced hierarchical deep feature learning with multimodal fusion. Payan
and Montana [6] used 3D CNNs to directly learn from volumetric MRI. Liu
et al. [5] proposed landmark-based deep multi-instance learning for more dis-

criminative spatial pattern extraction.

2.2.4 MRI Preprocessing

Proper MRI preprocessing enhances the reliability of longitudinal studies.
Reuter et al. [7] presented a robust within-subject template estimation method

using FreeSurfer, improving consistency in downstream classification.



2.2.5 Summary

Overall, research has shifted from handcrafted structural features to end-to-
end deep learning frameworks, supported by standardized datasets like ADNI

and strong preprocessing pipelines.



Chapter 3

Methodology and System

Architecture

3.1 Methodological Foundation

The methodological foundation of this project integrates deep feature ex-
traction and advanced classification techniques to develop an efficient frame-
work for Alzheimer’s Disease (AD) diagnosis using MRI data from the ADNI
dataset. The overall methodology consists of neuroimaging preprocessing,
deep feature extraction, and classification using RVFL-based models along

with modern deep-learning classifiers.

The MRI scans first undergo essential preprocessing steps such as skull strip-
ping, intensity normalization, resizing, and noise reduction. These steps ensure
consistency across the dataset and preserve important structural features rel-
evant to AD diagnosis. Following preprocessing, deep feature extraction is
performed using the ResNet-50 architecture, which captures high-level spatial
and structural patterns from the MRI images through its residual learning
framework. These extracted deep features form the input representation for

various classifiers.

Random Vector Functional Link (RVFL) networks serve as one of the primary



classification techniques due to their fast learning capability and direct input-
to-output connections. Enhanced variants such as EDRVFL, TRVFL, and
Evolutionary TRVFL are also used to improve model stability, generalization,
and performance. Evolutionary TRVFL incorporates population-based opti-
mization strategies to refine weights, biases, and regularization parameters,

leading to more robust decision boundaries and better classification outcomes.

In addition to RVFL-based models, the methodology also includes modern
deep-learning classifiers such as the Swift Classifier and ConvNeXt V2. The
Swift Classifier offers rapid inference and lightweight architecture suitable for
medical imaging tasks, while ConvNeXt V2 provides enhanced hierarchical fea-
ture learning through a next-generation convolutional design. These models
complement the RVFL-based methods and enable a comprehensive compara-

tive analysis.

The performance of all models is evaluated using a wide range of metrics,
including accuracy, precision, recall, Fl-score, sensitivity, specificity, ROC-
AUC, and confusion matrix analysis. These metrics help in identifying the
most effective classifier and provide a thorough understanding of each model’s

strengths in detecting Alzheimer’s Disease.

Overall, the methodological foundation of this project combines deep neural
feature extraction, evolutionary learning, classical machine-learning models,
and advanced deep-learning architectures to create a robust, scalable, and
accurate diagnostic framework for Alzheimer’s Disease detection using MRI
data.

3.1.1 Preprocessing

The dataset used in this study is obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI), consisting of MRI scans categorized into three
major classes: Alzheimer’s Disease (AD), Cognitively Normal (CN), and Mild
Cognitive Impairment (MCI). This diverse class distribution enables effective

evaluation of the proposed models across different stages of neurodegeneration.



1. Feature Extraction Feature extraction in this project is performed us-
ing the ResNet-50 deep convolutional neural network, which is widely
recognized for its strong feature representation capabilities. ResNet-50
employs a residual learning framework consisting of 50 layers, enabling
it to capture both low-level and high-level structural patterns present
in MRI images. The residual connections help mitigate the vanishing
gradient problem, allowing the network to learn deeper and more dis-

criminative features.

In this work, the preprocessed MRI scans are passed through the pre-
trained ResNet-50 model (excluding the final classification layers) to ex-
tract deep feature vectors. These features serve as robust input repre-
sentations for the subsequent RVFL-based models, Swift Classifier, and
ConvNeXt V2. By utilizing ResNet-50, the extracted features effectively
encode important spatial, textural, and anatomical information relevant

to distinguishing between AD, MCI, and CN classes.

2. Feature Matrix Cleaning, Imputation, and One-Hot Encoding:
After ResNet-50 feature extraction, the feature matrix is cleaned by con-
verting all feature columns into numeric format, with invalid or non-
numeric values coerced into NaN. Infinite values and zeros are treated as
missing data to prevent distortion in learning. Columns containing only
NaN values are removed, and the remaining missing values are imputed
using the median of each feature. Additionally, categorical attributes
such as class labels are processed using one-hot encoding to convert them
into machine-readable binary vectors. This ensures that all features are

numeric, consistent, and properly formatted for downstream classifiers.

10



3.2 Model Architecture

3.2.1 RVFL Architecture:

The Random Vector Functional Link (RVFL) model used in this study consists
of a direct input-to-output connection combined with a randomly generated
hidden layer. The architecture includes three primary components: (i) a direct
linear layer that maps the input features to the output space, (ii) a hidden
layer with randomly assigned weights followed by a sigmoid activation func-
tion, and (iii) a hidden-to-output layer that transforms the activated hidden
features. During the forward pass, the hidden features are concatenated with
the original input to form an enhanced feature representation, while the final
prediction is obtained by summing the outputs of the direct and hidden path-
ways. This architecture enables fast training, improved generalization, and

efficient handling of high-dimensional feature vectors.

3.2.2 EDRVFL Architecture:

The EDRVFL model is composed of multiple enhancement layers, each con-
taining randomly initialized weights and biases. Every layer performs stan-
dardization, nonlinear activation (such as sigmoid, sine, hardlim, tribas, rad-
bas, ReLU, or leaky ReLU), and concatenation of hidden features with the
original input. A bias term is appended, and the output weights for each
layer are computed analytically using ridge regression. Instead of relying on a
single output, EDRVFL aggregates predictions from all layers using (i) major-
ity voting and (ii) additive softmax-based probability fusion. This ensemble
of deep random layers increases robustness, reduces overfitting, and enables

strong performance even with limited training data.
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3.2.3 ConvNeXtV2 Feature-Aware Classifier Architec-

ture:

To utilize the high-dimensional ResNet-50 feature vectors within a convolu-
tional architecture, a feature—grid projection strategy is adopted. The original
feature vector is reshaped into a 2D grid by computing an optimal height—width
decomposition; if the vector length is not perfectly divisible, zero-padding is
applied to preserve spatial structure. The reshaped input is treated as a single-

channel image and passed through the ConvNeXtV2 backbone.

ConvNeXtV2 consists of four hierarchical stages, each beginning with a down-
sampling layer followed by multiple depthwise convolutional blocks. Every
block includes: (1) a depthwise convolution, (2) Layer Normalization, (3)
pointwise linear expansions, (4) a GELU activation, (5) a Global Response
Normalization (GRN) module, and (6) a final pointwise projection. To im-
prove generalization, stochastic depth via the DropPath operator is applied

across blocks.

The final stage output is globally averaged and normalized before being for-
warded to a fully connected classification head. The classifier is optimized
using the BCEWithLogits loss with an AdamW optimizer and softmax-based
probability inference. This design allows ConvNeXtV2 to learn spatially co-
herent patterns from reshaped feature embeddings, enabling high performance

even without using raw image inputs.

3.2.4 Swin Transformer V2 Feature-Aware Classifier Ar-

chitecture:

To transform a high-dimensional feature vector into a structure suitable for
hierarchical attention, the input feature embedding is partitioned into a fixed
number of tokens arranged on a 2D grid. Let the vector length be F' and the
number of tokens be T'= H x W, where T is a perfect square. Each chunk of

12



size F'/T is projected into an embedding space using a linear patch-projection

layer, producing a (H x W) token map.

This token grid is processed by a two-stage Swin Transformer V2 hierarchy.
Each stage consists of stacked Swin Transformer blocks that alternate between
standard windowed multi-head self-attention (W-MSA) and shifted window
attention (SW-MSA). Swin V2 enhancements—cosine attention scaling, con-
tinuous relative position bias via an MLP, logit-scale stabilization, and im-
proved normalization—are incorporated to improve training stability on small

windows.

Within each block, LayerNorm is applied before attention, followed by resid-
ual connections, stochastic depth (DropPath), and a GELU-activated MLP
expansion layer. Patch Merging is used between stages to reduce spatial reso-
lution while doubling channel dimensionality, enabling a hierarchical encoder

similar to CNN downsampling.

After the final stage, features are normalized and globally averaged across
tokens. A fully connected classification head produces the output logits for the
three target classes. Training uses the AdamW optimizer with cross-entropy
loss and softmax-based inference. This design allows the Swin V2 architecture
to learn structured correlations within pre-extracted features, even without

raw image inputs.

3.2.5 Translated Random Vector Functional Link (TRVFL)

Architecture:

The TRVFL model extends the traditional Random Vector Functional Link
network by incorporating a translation scaling mechanism that improves the
diversity of randomly generated hidden features. The architecture consists of
three components: (i) a direct input-to-output linear mapping, (ii) a randomly
initialized hidden layer with fixed weights, and (iii) an expanded feature space

formed by concatenating hidden activations with the raw inputs.

13



3.3 Tuning

3.3.1 TRVFL Hyperparameter Tuning

The hyperparameter optimization for the Translated Random Vector Func-
tional Link Network (TRVFL) was performed using a Genetic Algorithm (GA)
to maximize validation accuracy. The GA explored four key parameters: hid-
den layer size, regularization coefficient A, activation function, and translation
scale. The search space consisted of 10-1000 hidden neurons, regularization
values ranging from 1078 to 10%, activation functions {sigmoid, relu, tanh},

and translation scales within 0.0-1.0.

The GA was configured with a population size of 20, 15 generations, elitism
of 4 individuals, a mutation rate of 0.3, and uniform crossover, ensuring suffi-
cient exploration while maintaining stability through elite preservation. Each

candidate model was trained using a fast closed-form ridge regression solution:
W=+ H"H) " H"Y,

where H denotes the TRVFL-expanded feature matrix and Y is the one-hot
encoded label matrix. The computed weights were directly assigned to the
model’s hidden-output and direct-link layers, enabling rapid evaluation of each

configuration.

For every generation, two levels of logs were maintained: (1) a generation
summary tracking best and mean validation accuracy, and (2) full candidate-
level history storing all hyperparameter—performance relationships. These logs

support convergence visualization and parameter-performance analysis.

After 15 generations, the GA identified the following best configuration: 843
hidden neurons, A = 1.7468, ReLLU activation, and a translation scale of
0.5979, achieving the highest validation accuracy among all explored candi-
dates. Analysis of GA trends revealed that larger hidden layers (700-1000),
ReLU activations, and moderate regularization consistently promoted supe-

rior generalization, while translation scaling around 0.5-0.7 improved feature

14



separation. The optimized configuration was subsequently used for final model

training and evaluation.

3.3.2 Swin Classifier Hyperparameter Tuning

To optimize the performance of the Swin Transformer—based classifier, a ran-
dom search strategy was employed over a multi-dimensional hyperparameter
space. The search included learning rate, weight decay, embedding dimension,
hierarchical depth configuration, number of attention heads, and drop-path

regularization probability. The tuning space consisted of:
Ir € {107%,5 x 107%,107%}, weightdecay € {107,107%,5 x 1072},

embeddim € {64,128,256}, depths € {(2,2),(2,4), (4,4)},

numheads € {(4,8),(8,16), (4,4)}, drop — pathrate € {0.05,0.1,0.2}.

Given the large theoretical configuration space, a fixed-budget random search
with five trials was used. For each sampled configuration, the classifier was
trained for 25 epochs using the AdamW optimizer and one-hot encoded labels,
with Binary Cross-Entropy Loss applied on logits. The model’s performance
was evaluated using validation accuracy, and both configuration-wise results

and the best-performing model were stored.

During each trial, the SwinClassifier was instantiated with the sampled hyper-

parameters:
Config = {lr, weightdecay, embeddim, depths, heads, drop — path},
and optimized end-to-end on the extracted deep features. Validation accuracy

served as the fitness measure, enabling comparison across configurations.

After completing all trials, the random search identified the optimal config-
uration as the one achieving the highest validation accuracy. This config-
uration, along with its trained model weights, was preserved for final test-

ing. The tuning results demonstrate the effectiveness of lightweight random

15



search for high-dimensional transformer-based architectures, capturing strong-

performing combinations of embedding size, depth, and regularization.

3.3.3 ConvNeXtV2 Hyperparameter Tuning Setup

To systematically optimize the ConvNeXtV2-based classifier, an exhaustive
grid search strategy was designed across multiple architectural and training
parameters. The search space included four model variants (atto, femto, pico,
nano) and key parameters such as learning rate, batch size, drop-path rate,

head initialization scale, weight decay, and training epochs.

The full hyperparameter grid consisted of the following ranges:

— Model variant: atto, femto, pico, nano

Learning rate: 1 x 1074, 3 x 1074, 1 x 1073

Batch size: 16, 32, 64

Drop-path rate: 0.0, 0.1, 0.2

Head initialization scale: 0.5, 0.75, 1.0

Weight decay: 1 x 1074, 5 x 10~

— Epochs: 20, 30, 40
Due to the large search space, a reduced grid was also prepared for faster
experimentation. This smaller configuration focused on the femto and pico
variants with narrowed parameter ranges:

— Model variant: femto, pico

Learning rate: 3 x 1074, 1 x 1073

Batch size: 32, 64

Drop-path rate: 0.0, 0.1

Head initialization scale: 0.75

Weight decay: 1 x 1074

16



— Epochs: 30

Each hyperparameter configuration was generated using a Cartesian product
over the selected grid, enabling systematic exploration while maintaining com-
putational feasibility. This tuning procedure ensured robust selection of the

optimal ConvNeXtV2 variant and its corresponding training setup.

3.3.4 RVFL Hyperparameter Tuning Setup

To identify the optimal configuration for the Random Vector Functional Link
(RVFL) network, a structured hyperparameter search was conducted over two
fundamental parameters: the number of hidden enhancement nodes and the
regularization coefficient A\. The tuning aimed to jointly analyze the influ-
ence of model capacity (via hidden neurons) and generalization control (via

Tikhonov regularization).
The hyperparameter space explored in this study consisted of:
— Hidden nodes: Multiple enhancement-layer sizes were tested (e.g., 256,
512, 768, 843).
— Regularization parameter \: A logarithmically spaced range was eval-

uated to capture both weak and strong regularization regimes.

For each hyperparameter configuration, the RVFL model was trained on the
training split and evaluated on the validation split. Both training and valida-
tion accuracies were recorded to analyze how regularization and hidden-layer
width affect performance. A comprehensive performance visualization was

generated, including:
— Train accuracy vs. log;,(\) curves for different hidden-node settings.

— Validation accuracy vs. log;,(\) curves to identify overfitting trends.

— A heatmap of validation accuracy, with hidden-node count on the
vertical axis and log;,(A) on the horizontal axis, providing a global view

of search-space performance.

17



The Cartesian evaluation of hidden size and regularization strength enabled
systematic identification of the best-performing configuration. The optimal
hyperparameter pair was later used to train the final RVFL model on the
combined training and validation set before reporting the performance on the
held-out test set.

3.3.5 EDRVFL Hyperparameter Tuning Setup

To optimize the Ensemble Deep Random Vector Functional Link (EDRVFL)
classifier, a targeted hyperparameter search was conducted focusing on the
most influential architectural and regularization parameters. The EDRVFL
model extends the traditional RVFL network by stacking multiple enhance-
ment layers and combining their predictions through both voting- and addition-
based ensemble strategies. Therefore, selecting appropriate values for the num-
ber of enhancement nodes, depth of stacked layers, and regularization strength

is essential for stable and high-performing classification.
The hyperparameter space explored consisted of the following components:
— Number of enhancement nodes (7,,54¢5): Determines the dimension-
ality of the feature expansion in each RVFL layer.

— Regularization coefficient (\): Controls the magnitude of the ridge

regression penalty during output-weight computation.

— Number of stacked layers (14, ): Specifies the depth of the EDRVFL

architecture, enabling multi-level feature transformation.

— Activation function: The nonlinear activation applied in enhancement

layers (ReLU in this study).

Each possible parameter configuration was evaluated by training the EDRVFL
on the training split and measuring performance on the validation split using

both ensemble metrics:

— Voting accuracy — majority vote across layer outputs.

18



— Addition accuracy — aggregate probability across layers.

For each configuration, both training and validation accuracies were recorded,
producing a detailed search log used later for visualization and model selection.
The search investigated multiple regularization strengths while keeping the
number of nodes, activation function, and depth fixed for controlled analysis.
This setup enabled studying how variations in the ridge penalty influence the

ensemble’s performance stability and generalization capacity.

At the end of the search, the configuration yielding the highest validation
addition accuracy was selected as the optimal EDRVFL setup. This configu-
ration was subsequently used to retrain the model on the combined training

and validation set before reporting test-set performance.
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Chapter 4

Experimental Setup and Results

Analysis

4.1 Data Set Visualization

Figure 1 illustrates the distribution of labels across the training, validation,
and test subsets of the Alzheimer’s disease dataset. The dataset contains
three diagnostic classes: Alzheimer’s Disease (AD), Mild Cognitive Impair-
ment (MCI), and Cognitively Normal (CN). The training set has 1,081 AD,
866 MCI, and 781 CN samples, while the validation set contains 231 AD, 186
MCI, and 168 CN samples. The test set has 232 AD, 186 MCI, and 167 CN
samples. The bar chart clearly shows that the AD class has the highest num-
ber of samples across all splits, whereas CN has the fewest. Maintaining a
similar distribution across all subsets is important for reliable model training

and evaluation.
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Label Distribution in Alzheimer's Dataset
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Figure 1: Label distribution in the training, validation, and test sets of the

Alzheimer’s dataset.

Table 1: Label distribution across the training, validation, and test sets of the

Alzheimer’s dataset.

Class | Train | Validation | Test

AD 1081 231 232
MCI 866 186 186
CN 781 168 167

4.2 Performance Evaluation

4.2.1 ConvNeXt V2 Model Performance Evaluation

The ConvNeXt V2 model was evaluated on the dataset before and after hyper-
parameter tuning. The goal was to maximize validation accuracy and obtain

a robust model for the test set.
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p Initial Model Performance (Before Hyperparameter Tuning)

Before hyperparameter tuning, the model achieved the following performance

on the test set:

Metric Value
Test Accuracy 95.73%

Table 2: Performance of the ConvNeXt V2 model before hyperparameter tuning.

Classification Report (Before Tuning):

Class Precision Recall Fl-score Support
AD 0.942 0.963 0.952 232
CN 0.990 0.994 0.992 167
MCI 0.960 0.930 0.945 186
Accuracy 0.9573

Macro Avg 0.964 0.962 0.963 585
Weighted Avg 0.957 0.957 0.957 585

Table 3: Classification report for the ConvNeXt V2 model before hyperparameter

tuning.

B Hyperparameter Tuning

A hyperparameter search was conducted over 16 combinations of learning rate,
batch size, drop path rate, head initialization scale, weight decay, and epochs.

The best configuration obtained was:

— Variant: femto
— Learning Rate: 0.0003
Batch Size: 64

— Drop Path Rate: 0.1
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— Head Init Scale: 0.75
— Weight Decay: 0.0001
— Epochs: 30

This configuration achieved the highest validation accuracy of 96.92%.

i Final Model Performance (After Hyperparameter Tuning)

Metric Validation Set Test Set
Accuracy 96.92% 97.26%
Training Time 37.0 s

Table 4: Final evaluation metrics for the ConvNeXt V2 model after hyperparameter

tuning.

Classification Report (After Tuning):

Class Precision Recall F1l-score Support
AD 0.9578 0.9784 0.9680 232
CN 0.9940 1.0000 0.9970 167
MCI 0.9722 0.9409 0.9563 186
Accuracy 0.9726

Macro Avg 0.9747 0.9731 0.9738 585
Weighted Avg 0.9727 0.9726 0.9726 585

Table 5: Classification report for the ConvNeXt V2 model after hyperparameter

tuning.

This comparison clearly demonstrates that hyperparameter tuning improved
the model’s overall performance, increasing the test accuracy from 95.73% to

97.26% and improving class-wise precision, recall, and F1-scores.
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Figure 2: Performance evaluation plots for ConvNeXt V2 model.

4.2.2 Swin Classifier Performance Evaluation

The Swin Classifier was evaluated on the dataset before and after hyperpa-
rameter tuning. The goal was to improve model accuracy and obtain reliable
predictions on the test set.

i Initial Model Performance (Before Hyperparameter Tuning)

Before hyperparameter tuning, the model achieved the following performance:

Metric Value
Test Accuracy 95.38%

Table 6: Performance of the Swin Classifier before hyperparameter tuning.

i Final Model Performance (After Hyperparameter Tuning)

After tuning hyperparameters, the model achieved the following performance:

Metric Value
Final Test Accuracy 97.09%

Table 7: Performance of the Swin Classifier after hyperparameter tuning.
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p Classification Report (Tuned Model - Test Set)

Class Precision Recall Fl-score Support
AD 0.9574 0.9698 0.9636 232
CN 0.9940 1.0000 0.9970 167
MCI 0.9670 0.9462 0.9565 186
Accuracy 0.9709

Macro Avg 0.9728 0.9720 0.9724 585
Weighted Avg 0.9709 0.9709 0.9709 585

Table 8: Classification report of the Swin Classifier on the test set after hyperpa-

rameter tuning.

Hyperparameter tuning improved the test accuracy from 95.38% to 97.09%
and enhanced class-wise precision, recall, and F1-scores, particularly for the
MCT and AD classes.

Confusion Matrix - Tuned Model (Test Set)

(=]
predicted label

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 3: Performance evaluation plots for Swin Classifier.

4.2.3 TRVFL Model Performance Evaluation

The TRVFL (Tensor Random Vector Functional Link) model was evaluated

on the test set to assess its performance across multiple metrics. The model
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was saved and reloaded to ensure reproducibility, and identical results were

obtained.

g Final Model Performance

The TRVFL model achieved the following performance on the test set:

Metric Value
Test Accuracy 98.63%
Test Loss 0.6154
Precision 0.9863
Recall 0.9863
F1-score 0.9863
Cohen’s Kappa 0.9793

Matthews Correlation Coefficient (MCC)  0.9793

Table 9: Evaluation metrics for the TRVFL model on the test set.

p Classification Report (Test Set)

Class Precision Recall Fl-score Support
AD 0.9828 0.9828 0.9828 232
CN 1.0000 1.0000 1.0000 167
MCI 0.9785 0.9785 0.9785 186
Accuracy 0.9863

Macro Avg 0.9871 0.9871 0.9871 585
Weighted Avg 0.9863 0.9863 0.9863 585

Table 10: Classification report for the TRVFL model on the test set.

The TRVFL model demonstrates superior performance, achieving high preci-

sion, recall, and F1-score across all classes. Both Cohen’s Kappa and MCC
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indicate strong agreement and correlation, confirming the reliability of the

model in discriminating AD, CN, and MCI classes.

— Test Accuracy: 98.63%
— Test Loss: 0.6154

ROC Curves (One-vs-Rest) - TRVFL

Confusion Matrix (TRVFL)

AD o
Predicted label

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 4: Performance evaluation plots for trvfl Modal.

4.2.4 Ensemble Deep RVFL (EDRVFL) Model Perfor-

mance Evaluation

The Ensemble Deep RVFL (EDRVFL) model was trained and evaluated on
the dataset using hyperparameter tuning to optimize performance. Two ag-

gregation strategies were used: **Voting®* and **Addition™**.

B Hyperparameter Search

A hyperparameter search was performed to find the best combination of nodes,
regularization parameter A, layers, and activation function. The results for key

configurations are summarized below:
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Nodes A Layers Activation Train Acc (vote/add) Val Acc (vote/add)
10 1 10 relu 1.0000 / 1.0000 0.9282 / 0.9265
10 10 10 relu 1.0000 / 1.0000 0.9573 / 0.9573
10 20 10 relu 1.0000 / 1.0000 0.9590 / 0.9590
10 30 10 relu 0.9996 / 0.9996 0.9607 / 0.9607
10 40 10 relu 0.9996 / 0.9996 0.9607 / 0.9607
10 50 10 relu 0.9993 / 0.9993 0.9607 / 0.9607

Table 11: Selected results from EDRVFL hyperparameter search. The best config-

uration was Nodes=10, A = 30, Layers=10, Activation=relu.

The best hyperparameter configuration achieved:

— Nodes: 10

— Lambda (\): 30

— Layers: 10

— Activation: relu

— Train Accuracy: 0.9996 (vote/add)

— Validation Accuracy: 0.9607 (vote/add)

g Final Test Performance

The best EDRVFL model was retrained on the combined train+validation data
and evaluated on the test set. Both **Voting™* and **Addition** aggregation

methods achieved the same performance:

Metric
Test Accuracy 98.63%

Voting Addition
98.63%

Table 12: Final test accuracy of the EDRVFL model using voting and addition

strategies.
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i Evaluation Metrics (Test Set)

Metric Voting Addition
Accuracy 0.9863 0.9863
Precision 0.9863 0.9863
Recall 0.9863 0.9863
F1-score 0.9863 0.9863
Cohen’s Kappa 0.9793 0.9793
MCC 0.9793 0.9793

Table 13: Evaluation metrics for the EDRVFL model on the test set.

i Classification Report (Test Set)

Voting:

Class Precision Recall Fl-score Support
AD 0.9786 0.9871 0.9828 232
CN 1.0000 1.0000 1.0000 167
MCI 0.9837 0.9731 0.9784 186
Accuracy 0.9863

Macro Avg 0.9874 0.9867 0.9871 585
Weighted Avg 0.9863 0.9863 0.9863 585

Table 14: Classification report for the EDRVFL model using voting strategy.

Addition:
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Class Precision Recall F1l-score Support

AD 0.9786 0.9871 0.9828 232
CN 1.0000 1.0000 1.0000 167
MCI 0.9837 0.9731 0.9784 186
Accuracy 0.9863

Macro Avg 0.9874 0.9867  0.9871 585
Weighted Avg 0.9863 0.9863 0.9863 585

Table 15: Classification report for the EDRVFL model using addition strategy.

Confusion Matrix - Addition (Ensemble Deep RVFL} Precision-Recall Curves (One-vs-Rest) - Addition ROC Curves (One.vs.Rest) - Addition

[e] MCl
Predicted label

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 5: Performance evaluation plots for trvfl Modal.

4.2.5 RVFL Model Performance Evaluation

The Random Vector Functional Link (RVFL) model was evaluated on the
dataset with various hyperparameter configurations, including different num-
bers of hidden nodes (H) and regularization parameters (A). The goal was
to optimize validation accuracy and obtain the best performing model for the

test set.

B Hyperparameter Search

The hyperparameter search explored multiple configurations of hidden nodes

and regularization parameters. Selected results are summarized below:
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Hidden Nodes (H) A Train Acc Val Acc Test Acc
10 0.1 1.0000 0.9453 0.9316

10 1 0.9996 0.9607 0.9556
20 1 1.0000 0.9624 0.9590
20 1 1.0000 0.9624 0.9590
100 1 1.0000 0.9607 0.9573
500 1 1.0000 0.9624 0.9624

Table 16: Selected results from RVFL hyperparameter search. The best configura-
tion was Hidden Nodes=20, A = 1.

The best configuration was found to be:

— Hidden Nodes: 20
— Regularization (\): 1
— Train Accuracy: 1.0000

— Validation Accuracy: 0.9624

g Final Test Performance

The RVFL model with the best configuration was evaluated on the test set,

achieving:
Metric Value
Final Test Accuracy 98.46%
Test Loss 0.6133

Table 17: Final test performance of the best RVFL model.
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i Evaluation Metrics (Test Set)

Metric Value
Accuracy 0.9846
Precision 0.9846
Recall 0.9846
F1-score 0.9846
Cohen’s Kappa 0.9767

Matthews Correlation Coefficient (MCC) 0.9767

Table 18: Evaluation metrics for the RVFL model on the test set.

i Classification Report (Test Set)

Class Precision Recall Fl-score Support
AD 0.9827 0.9784 0.9806 232
CN 1.0000 1.0000 1.0000 167
MCI 0.9733 0.9785 0.9759 186
Accuracy 0.9846

Macro Avg 0.9853 0.9856 0.9855 585
Weighted Avg 0.9846 0.9846 0.9846 585

Table 19: Classification report for the RVFL model on the test set.

— Test Accuracy: 98.46%
— Test Loss: 0.6133
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Confusion Matrix (RVFL Model) Precision-Recall Curves (One-vs-Rest) ROC Curves (One-vs-Rest)

o
Predicted label

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 6: Performance evaluation plots for trvfl Modal.

Model Accuracy (%) Precision Recall Fl-score Cohen’s Kappa MCC
ConvNeXt V2 97.26 0.9727 0.9726 0.9726 - -
Swin Classifier 97.09 0.9709 0.9709 0.9709 - -
TRVFL 98.63 0.9863 0.9863 0.9863 0.9793 0.9793
EDRVFL 98.63 0.9863 0.9863 0.9863 0.9793 0.9793
RVFL 98.46 0.9846 0.9846 0.9846 0.9767 0.9767

Table 20: Comparison of performance metrics for all five models on the test set.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this study, we evaluated multiple machine learning and deep learning models
for the early detection and classification of Alzheimer’s Disease (AD), Mild
Cognitive Impairment (MCI), and Cognitively Normal (CN) subjects based on
imaging and feature data. The models included ConvNeXt V2, Swin Classifier,
Random Vector Functional Link (RVFL), Tensor Random Vector Functional
Link (TRVFL), and Ensemble Deep RVFL (EDRVFL).

The results demonstrate that all models achieved high classification perfor-

mance, with notable differences in accuracy and robustness:

— **ConvNeXt V2** achieved a test accuracy of 97.26%, showing strong

performance in image-based feature extraction and classification.

— **Swin Classifier** slightly outperformed with a test accuracy of 97.09%,
emphasizing the effectiveness of transformer-based architectures for Alzheimer’s

detection.

— **RVFL** and its variants **TRVFL** and **EDRVFL** achieved the
highest accuracies, 98.46%, 98.63%, and 98.63% respectively, indicating
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that functional link-based neural networks and ensemble methods are

highly effective for structured features and tabular data.

— Ensemble strategies, particularly in EDRVFL, further improved relia-
bility, demonstrating robustness across class labels with high precision,

recall, F1-scores, Cohen’s Kappa, and MCC.

Overall, the study highlights that **functional link neural networks, especially
when combined in ensemble architectures, provide superior performance™* for
Alzheimer’s detection, while deep learning image-based models also achieve
competitive results. This indicates the potential for multi-modal approaches,
combining imaging and structured features, to further enhance early detection

of Alzheimer’s Disease.

The models developed in this project can serve as a foundation for real-world
clinical decision support systems, providing accurate and reliable predictions
to aid neurologists and healthcare professionals in early diagnosis and inter-

vention planning.

5.2 Future Work:

Further improvements can be achieved by exploring larger datasets, integrat-
ing multi-modal data (such as MRI, PET, and cognitive assessments), and
investigating explainable Al methods to interpret model predictions for clini-

cal use.
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Appendix A

Some Complex Proofs and

simple Results
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