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Preface

The early detection of Alzheimer’s Disease (AD) is crucial for timely intervention and

improving patient outcomes. This B.Tech. project focuses on developing an effective

framework for diagnosing Alzheimer’s using multimodal neuroimaging data along

with machine learning techniques. These techniques include ConvNeXtV2,Swin

Classifier Random Vector Functional Link (RVFL), TRVFL, and ensemble-based

methods.

The main goal of this work is to create models that can accurately classify AD,

Mild Cognitive Impairment (MCI), and cognitively normal (CN) subjects. The

project highlights careful tuning of hyperparameters, the use of ensemble strategies,

and a comparative evaluation of deep learning and functional link-based models to

achieve the best results.

This thesis shows how theoretical knowledge connects with practical experimen-

tation in the field of computational neuroscience. It also emphasizes the value of

using multimodal data to improve diagnostic accuracy and the potential of machine

learning models to help clinicians make decisions.

We hope the methods and findings in this work will lay the groundwork for

more research in Alzheimer’s detection and inspire future advancements in medical

imaging and predictive modeling.

We sincerely thank Prof. Deepak Gupta for his guidance and support, along

with our peers for their valuable feedback, which has greatly improved the quality

of this work.
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Chapter 1

Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by progres-

sive memory impairment, cognitive decline, and an individual’s inability to execute

the activities of daily living. It is important to identify AD early because effective

intervention can delay the progression of the disease and increase quality of life for

patients and their families. Recent advances in machine learning and deep learning

provide the capability for automated analysis of neuroimaging data, which assists in

the early and accurate identification of AD. This project demonstrates a multimodal

neuroimaging-based AD diagnostic system based on the ADNI MRI dataset using

ResNet-50 neural network feature extraction along with multiple other advanced

classifiers RVFL and modified RVFLs (such as EDRVFL, TRVFL, Swift Classifier,

and ConvNeXtV2).

1.1 Motivation

Alzheimer’s Disease (AD) is a progressive neurodegenerative condition that steadily

impacts memory, cognition, and behavioral functioning. The increasing elderly pop-

ulation globally increases the prevalence of Alzheimer’s Disease at a rapidly growing

rate, making it a significant public health issue. According to recent clinical studies,

there are millions of people around the globe with AD, and this will increase dra-

matically in coming decades. Despite significant research efforts, AD does not have
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a cure, which underscores the significant importance of early and accurate diagnosis.

Early diagnosis allows for timely intervention, slows the progression of the disease,

and improves the quality of life for the patient.

Magnetic Resonance Imaging has become one of the best non-invasive techniques

available to assess structural brain alterations associated with AD; however, the

reading of MRIs relies on expert knowledge in radiology and is often based on a

highly subjective and time-consuming analysis that also suffers from inter-observer

variability. Traditional machine-learning approaches have offered partial solutions,

but there remain challenges associated with capturing the complexity of patterns

associated with neuroimaging.

Despite such advancements, the unification of deep feature extraction with fast,

robust, and generalizable classifiers still remains an open challenge. Specifically,

evolutionary variants of TRVFL can be further optimized to improve generalization

and reduce overfitting, especially in complex neuroimaging tasks. There is, there-

fore, a strong motivation to develop a comprehensive multimodal framework that

will unify ResNet-50-based feature extraction with advanced evolutionary TRVFL

classifiers in the interest of reliable diagnosis of Alzheimer’s Disease using the ADNI

MRI dataset.

These findings motivate the present work, which aims at bridging existing gaps

through using multimodal neuroimaging, advanced deep-learning feature extraction,

and evolutionary classification techniques to be able to reach a more efficient, accu-

rate, and automated AD diagnosis system.

1.2 Problem Statement

The difficulty in diagnosing Alzheimer’s Disease from MRI scans lies in the fact that

there are subtle structural brain changes, high-dimensional data, and a high reliance

on subjective expert interpretation. Most of the traditional models in machine learn-

ing have poor generalization performance when applied to complex neuroimaging

datasets. Though deep learning techniques like ResNet-50 extract meaningful fea-

tures, choosing an efficient classifier with good accuracy is still a main issue. Thus,
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this project tries to overcome these shortcomings by developing a robust and reli-

able framework combining deep feature extraction with deep learning and machine

learning models.

1.3 Objectives

The main objectives of this project are as follows:

• To create an automatic framework for diagnosing Alzheimer’s Disease using

MRI data from the ADNI dataset.

• To extract detailed and distinct features from MRI scans, use the ResNet-50

architecture.

• To implement and evaluate multiple classifiers, including RVFL, EDRVFL,

TRVFL, Evolutionary TRVFL, Swift Classifier, and ConvNeXtV2. To perform

hyperparameter tuning for all models to achieve the best performance and

ensure a fair comparison.

• To compare the performance of all models, we will find the best classifier for

AD detection. We will use various evaluation metrics, including accuracy,

precision, recall, F1-score, specificity, sensitivity, ROC-AUC, and confusion

matrix analysis.
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Chapter 2

Literature Review and Related

Work

2.1 Multimodal Neuroimaging with Evolution-

ary RVFL (Goel et al., 2023)

Goel et al. [2] proposed an Evolutionary RVFL (E-RVFL) classifier for early

AD diagnosis using multimodal MRI and PET data. They combined deep

and handcrafted features from both types of scans to capture structural and

metabolic brain changes. The RVFL parameters were improved using an evo-

lutionary strategy, which made the model more robust, reduced its depen-

dence on random initialization, and improved its generalization. Experiments

on ADNI showed that E-RVFL achieved higher accuracy and better overall

performance compared to traditional RVFL, SVM, and deep CNN baselines.
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2.2 Conv-eRVFL: CNN-Enhanced RVFL for

AD Detection (Sharma et al., 2023)

Sharma et al. [12] introduced Conv-eRVFL, a hybrid model combining CNN-

based feature extraction with an ensemble RVFL classifier for multimodal

(MRI + PET) AD diagnosis. CNN features captured rich spatial patterns,

while the ensemble RVFL improved stability and decision robustness. Using

the ADNI dataset, Conv-eRVFL outperformed traditional RVFL, standalone

CNNs, and other baselines across accuracy, sensitivity, and specificity, demon-

strating the strength of merging deep features with ensemble RVFL learning.

2.3 Biomarker Models

Early work on Alzheimer’s disease (AD) focused on understanding biomarker

progression. Jack et al. [5] proposed a dynamic model describing the sequence

of pathological changes in AD. The ADNI study [4] further standardized MRI

acquisition and established a widely used benchmark dataset.

2.4 Classical ML Approaches

Traditional machine learning techniques relied on handcrafted MRI features.

Fan et al. [1] demonstrated that feature-selected structural MRI measurements

combined with SVMs can effectively classify AD and MCI.

2.5 Deep Learning Methods

Deep learning significantly improved MRI feature representation. Suk et

al. [13] introduced hierarchical deep feature learning with multimodal fusion.

Payan and Montana [9] used 3D CNNs to directly learn from volumetric MRI.
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Liu et al. [6] proposed landmark-based deep multi-instance learning for more

discriminative spatial pattern extraction.

2.6 MRI Preprocessing

Proper MRI preprocessing enhances the reliability of longitudinal studies.

Reuter et al. [10] presented a robust within-subject template estimation method

using FreeSurfer, improving consistency in downstream classification.

2.7 Summary

Overall, research has shifted from handcrafted structural features to end-to-

end deep learning frameworks, supported by standardized datasets like ADNI

and strong preprocessing pipelines.
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Chapter 3

Methodology and System

Architecture

3.1 Methodological Foundation

The foundation of this project combines deep feature extraction and classi-

fication techniques to create a framework for diagnosing Alzheimer’s Disease

(AD) using MRI data from the ADNI dataset. The methodology includes

neuroimaging preprocessing, deep feature extraction, and classification with

RVFL-based models, along with modern deep-learning classifiers.

First, the MRI scans go through important preprocessing steps, such as skull

stripping, intensity normalization, resizing, and noise reduction. These steps

ensure consistency across the dataset and maintain crucial structural features

relevant to AD diagnosis. After preprocessing, deep feature extraction occurs

using the ResNet-50 architecture. This architecture captures high-level spatial

and structural patterns from the MRI images through its residual learning

framework. The deep features extracted form the input for various classifiers.
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Random Vector Functional Link (RVFL) networks are one of the main clas-

sification methods because of their fast learning ability and direct input-to-

output connections. Improved variants like EDRVFL, TRVFL, and Evolution-

ary TRVFL are also used to boost model stability, generalization, and perfor-

mance. Evolutionary TRVFL uses population-based optimization strategies

to improve weights, biases, and regularization parameters. This leads to more

stable decision boundaries and better classification results.

Along with RVFL-based models, the methodology includes modern deep-learning

classifiers like the Swift Classifier and ConvNeXt V2. The Swift Classifier pro-

vides quick inference and a lightweight design suitable for medical imaging

tasks. In contrast, ConvNeXt V2 offers better hierarchical feature learning

with a next-generation convolutional design. These models work alongside the

RVFL methods and allow for a thorough comparative analysis.

The performance of all models is assessed using a variety of metrics, including

accuracy, precision, recall, F1-score, sensitivity, specificity, ROC-AUC, and

confusion matrix analysis. These metrics help identify the most effective clas-

sifier and give a clear understanding of each model’s strengths in detecting

Alzheimer’s Disease.

Overall, the foundation of this project merges deep neural feature extrac-

tion, evolutionary learning, classical machine-learning models, and modern

deep-learning architectures. This creates a robust and scalable framework for

accurately diagnosing Alzheimer’s Disease using MRI data.

3.1.1 Preprocessing

The dataset in this study comes from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI). It includes MRI scans divided into three main categories:

Alzheimer’s Disease (AD), Cognitively Normal (CN), and Mild Cognitive Im-

pairment (MCI). This varied class distribution allows for a thorough evaluation

of the proposed models at different stages of neurodegeneration.
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1. Feature Extraction Feature extraction in this project uses the ResNet-

50 deep convolutional neural network, known for its strong feature rep-

resentation abilities. ResNet-50 has a residual learning framework with

50 layers, which helps capture both low-level and high-level structural

patterns in MRI images. The residual connections reduce the vanishing

gradient problem, allowing the network to learn deeper and more specific

features.

In this work, the preprocessed MRI scans go through the pretrained

ResNet-50 model, excluding the final classification layers, to extract deep

feature vectors. These features provide solid input representations for

the next RVFL-based models, the Swift Classifier, and ConvNeXt V2.

By using ResNet-50, the extracted features effectively include important

spatial, textural, and anatomical information that helps differentiate be-

tween AD, MCI, and CN classes.

2. Feature Matrix Cleaning, Imputation, and One-Hot Encoding:

After extracting features with ResNet-50, the feature matrix is cleaned

by converting all feature columns into numeric format. Invalid or non-

numeric values are turned into NaN. Infinite values and zeros are also

treated as missing data to avoid skewing the learning process. Columns

that only contain NaN values are removed. The remaining missing values

are filled in using the median of each feature. Additionally, categorical

attributes like class labels are processed with one-hot encoding to convert

them into machine-readable binary vectors. This makes sure that all

features are numeric, consistent, and properly formatted for downstream

classifiers.
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3.2 Model Architecture

3.2.1 RVFL Architecture:

The Random Vector Functional Link (RVFL) model used in this study has

a direct input-to-output connection and a randomly generated hidden layer.

The structure includes three main parts: (i) a direct linear layer that maps

the input features to the output, (ii) a hidden layer with randomly assigned

weights and a sigmoid activation function, and (iii) a hidden-to-output layer

that transforms the activated hidden features. During the forward pass, the

hidden features are combined with the original input to create a better fea-

ture representation. The final prediction comes from adding the outputs of

the direct and hidden pathways. This design allows for fast training, better

generalization, and effective handling of high-dimensional feature vectors.

3.2.2 EDRVFL Architecture:

The EDRVFL model has several enhancement layers. Each layer consists of

randomly set weights and biases. Every layer standardizes the input, applies

a nonlinear activation function (like sigmoid, sine, hardlim, tribas, radbas,

ReLU, or leaky ReLU), and combines hidden features with the original input.

A bias term is added, and the output weights for each layer are calculated using

ridge regression. Instead of using a single output, EDRVFL combines predic-

tions from all layers through (i) majority voting and (ii) additive softmax-based

probability fusion. This group of deep random layers improves robustness, low-

ers overfitting, and allows for strong performance even with limited training

data.
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3.2.3 TRVFL Architecture:

The TRVFLmodel adopts a two-stage Random Vector Functional Link (RVFL)

architecture enhanced with an ℓ1-norm based quadratic programming frame-

work. First, random weights and biases generate L nonlinear hidden features

through sigmoid activation, which are concatenated with the original input to

form an expanded feature representation. For each class, the model constructs

a one-vs-rest binary learning setup by splitting samples into positive and neg-

ative subsets. Two quadratic programming problems with box constraints are

then solved to obtain dual variables for both subsets, ensuring robust class

separation. The primal output weights (β1, β2) are recovered using regular-

ized inverses of HTH and GTG, following the original MATLAB formulation.

During inference, the enhanced feature matrix is multiplied with these learned

weights to compute decision values, and the binary decision rule assigns the

positive class when |y1| < |y2|. Extending this mechanism to multi-class clas-

sification, the model trains K independent one-vs-rest submodels, each pro-

ducing a score based on the magnitude of |Iβ1|. The final predicted label

corresponds to the class yielding the minimum score, representing the closest

match to its learned manifold. This architecture provides a computationally

simple yet effective framework for multi-class neuroimaging classification.

3.2.4 ConvNeXtV2 Feature-Aware Classifier Architec-

ture:

To use the high-dimensional ResNet-50 feature vectors in a convolutional ar-

chitecture, a feature grid projection strategy is applied. The original feature

vector is reshaped into a 2D grid by calculating an optimal height and width

decomposition. If the vector length is not perfectly divisible, zero-padding is

used to maintain the spatial structure. The reshaped input is treated as a

single-channel image and is passed through the ConvNeXtV2 backbone.
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ConvNeXtV2 has four hierarchical stages. Each stage starts with a downsam-

pling layer, followed by several depthwise convolutional blocks. Each block

includes: (1) a depthwise convolution, (2) Layer Normalization, (3) pointwise

linear expansions, (4) a GELU activation, (5) a Global Response Normaliza-

tion (GRN) module, and (6) a final pointwise projection. To enhance gen-

eralization, stochastic depth using the DropPath operator is applied across

blocks.

The output from the final stage is globally averaged and normalized before

being sent to a fully connected classification head. The classifier is optimized

with the BCEWithLogits loss, using an AdamW optimizer and softmax-based

probability inference. This setup allows ConvNeXtV2 to learn spatially coher-

ent patterns from reshaped feature embeddings, achieving high performance

even without raw image inputs.

3.2.5 Swin Transformer V2 Feature-Aware Classifier Ar-

chitecture:

To change a high-dimensional feature vector into a structure for hierarchical

attention, the input feature embedding is divided into a fixed number of tokens

arranged on a 2D grid. Let the vector length be F and the number of tokens be

T = H×W , where T is a perfect square. Each chunk of size F/T is projected

into an embedding space using a linear patch-projection layer. This creates a

(H ×W ) token map.

This token grid goes through a two-stage Swin Transformer V2 hierarchy. Each

stage has stacked Swin Transformer blocks that alternate between standard

windowed multi-head self-attention (W-MSA) and shifted window attention

(SW-MSA). Swin V2 improvements, like cosine attention scaling, continuous

relative position bias through an MLP, logit-scale stabilization, and better

normalization, are included to improve training stability on small windows.

Within each block, LayerNorm is applied before attention. This is followed

by residual connections, stochastic depth (DropPath), and a GELU-activated
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MLP expansion layer. Patch Merging is used between stages to decrease spa-

tial resolution while doubling channel dimensionality, allowing a hierarchical

encoder similar to CNN downsampling.

After the final stage, features are normalized and averaged globally across

tokens. A fully connected classification head generates the output logits for the

three target classes. Training uses the AdamW optimizer with cross-entropy

loss and softmax-based inference. This setup lets the Swin V2 architecture

learn structured correlations within pre-extracted features, even without using

raw image inputs.

3.3 Tuning

3.3.1 RVFL Hyperparameter Tuning Setup

To find the best setup for the Random Vector Functional Link (RVFL) net-

work, a focused search was carried out over two key parameters: the number

of hidden enhancement nodes and the regularization coefficient λ. The tuning

aimed to look at how model capacity, through hidden neurons, and general-

ization control, through Tikhonov regularization, affect performance.

The hyperparameter space explored in this study consisted of:

– Hidden nodes: Multiple enhancement-layer sizes were tested (e.g., 256,

512, 768, 843).

– Regularization parameter λ: A logarithmically spaced range was eval-

uated to capture both weak and strong regularization regimes.

For each hyperparameter configuration, the RVFL model was trained on the

training split and evaluated on the validation split. Both training and valida-

tion accuracies were recorded to analyze how regularization and hidden-layer

width affect performance. A comprehensive performance visualization was

generated, including:
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– Train accuracy vs. log10(λ) curves for different hidden-node settings.

– Validation accuracy vs. log10(λ) curves to identify overfitting trends.

– A heatmap of validation accuracy, with hidden-node count on the

vertical axis and log10(λ) on the horizontal axis, providing a global view

of search-space performance.

The Cartesian evaluation of hidden size and regularization strength allowed for

a clear identification of the best-performing configuration. We later used the

optimal hyperparameter pair to train the final RVFL model on the combined

training and validation set. We then reported the performance on the held-out

test set.

3.3.2 EDRVFL Hyperparameter Tuning Setup

To improve the Ensemble Deep Random Vector Functional Link (EDRVFL)

classifier, we conducted a focused hyperparameter search on the most impor-

tant architectural and regularization parameters. The EDRVFL model builds

on the traditional RVFL network by adding multiple enhancement layers and

combining their predictions using both voting and addition-based ensemble

strategies. Therefore, choosing the right values for the number of enhance-

ment nodes, the depth of stacked layers, and the regularization strength is

crucial for stable and effective classification.

The hyperparameter space explored consisted of the following components:

– Number of enhancement nodes (nnodes): Determines the dimension-

ality of the feature expansion in each RVFL layer.

– Regularization coefficient (λ): Controls the magnitude of the ridge

regression penalty during output-weight computation.

– Number of stacked layers (nlayer): Specifies the depth of the EDRVFL

architecture, enabling multi-level feature transformation.

– Activation function: The nonlinear activation applied in enhancement

layers (ReLU in this study).
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Each possible parameter configuration was evaluated by training the EDRVFL

on the training split and measuring performance on the validation split using

both ensemble metrics:

– Voting accuracy — majority vote across layer outputs.

– Addition accuracy — aggregate probability across layers.

For each configuration, we recorded both training and validation accuracies.

This created a detailed search log that we used later for visualization and

model selection. The search looked at different regularization strengths while

keeping the number of nodes, activation function, and depth the same for a

controlled analysis. This setup allowed us to study how changes in the ridge

penalty affect the stability and generalization of the ensemble’s performance.

At the end of the search, we chose the configuration with the highest validation

accuracy as the best EDRVFL setup. We then retrained the model using the

combined training and validation set before reporting the performance on the

test set.

3.3.3 TRVFL Hyperparameter Tuning

To optimize the performance of the TRVFL classifier, a systematic hyperpa-

rameter tuning procedure was employed. The tuning process focused primarily

on two key parameters: the number of random hidden nodes (Lhidden) and the

penalty coefficient (c1) used in the ℓ1-norm quadratic programming stage. For

each candidate pair (Lhidden, c1), a complete multi-class TRVFL model was

trained using the one-vs-rest setup, followed by evaluation on the validation

dataset. The validation accuracy was computed for each configuration, and

the best-performing combination was selected based on the highest accuracy

achieved. During this search, errors related to empty class splits or singular

matrices were gracefully handled by skipping invalid parameter combinations.

The tuning loop maintained records of the best accuracy, along with the corre-

sponding hidden layer size and penalty parameter, ensuring that the optimal
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configuration was identified. This procedure allowed the model to strike an ef-

fective balance between representational capacity and regularization strength,

ultimately improving classification performance.

3.3.4 ConvNeXtV2 Hyperparameter Tuning Setup

To optimize the ConvNeXtV2-based classifier, we designed a thorough grid

search strategy that covered various architectural and training parameters.

The search space included four model variants: atto, femto, pico, and nano. It

also featured key parameters such as learning rate, batch size, drop-path rate,

head initialization scale, weight decay, and training epochs.

The complete hyperparameter grid included these ranges:

– Model variant: atto, femto, pico, nano

– Learning rate: 1× 10−4, 3× 10−4, 1× 10−3

– Batch size: 16, 32, 64

– Drop-path rate: 0.0, 0.1, 0.2

– Head initialization scale: 0.5, 0.75, 1.0

– Weight decay: 1× 10−4, 5× 10−4

– Epochs: 20, 30, 40

Given the large search space, we also prepared a smaller grid for quicker ex-

perimentation. This reduced configuration centered on the femto and pico

variants with more focused parameter ranges:

– Model variant: femto, pico

– Learning rate: 3× 10−4, 1× 10−3

– Batch size: 32, 64

– Drop-path rate: 0.0, 0.1

– Head initialization scale: 0.75
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– Weight decay: 1× 10−4

– Epochs: 30

We generated each hyperparameter configuration using a Cartesian product

over the selected grid. This approach allowed systematic exploration while

keeping computational demands manageable. This tuning process helped us

select the best ConvNeXtV2 variant and its training setup.

3.3.5 Swin Classifier Hyperparameter Tuning

To improve the performance of the Swin Transformer-based classifier, a ran-

dom search strategy was used across a multi-dimensional hyperparameter

space. The search considered several factors, including learning rate, weight

decay, embedding dimension, hierarchical depth, number of attention heads,

and drop-path regularization probability. The tuning space included:

lr ∈ {10−4, 5× 10−4, 10−3}, weightdecay ∈ {10−3, 10−2, 5× 10−2},

embeddim ∈ {64, 128, 256}, depths ∈ {(2, 2), (2, 4), (4, 4)},

numheads ∈ {(4, 8), (8, 16), (4, 4)}, drop− pathrate ∈ {0.05, 0.1, 0.2}.

Given the large configuration space, a fixed-budget random search with five

trials was performed. For each sampled configuration, the classifier was trained

for 25 epochs using the AdamW optimizer and one-hot encoded labels, apply-

ing Binary Cross-Entropy Loss on the logits. The model’s performance was

assessed through validation accuracy, with both configuration results and the

best-performing model recorded.

During each trial, the SwinClassifier was created with the sampled hyperpa-

rameters:
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Config = {lr, weightdecay, embeddim, depths, heads, drop− path},

and optimized end-to-end on the extracted deep features. Validation accuracy

acted as the fitness measure, allowing for comparison across configurations.

After all trials were completed, the random search found the best configura-

tion as the one with the highest validation accuracy. This configuration and

its trained model weights were kept for final testing. The tuning results show

the usefulness of random search for high-dimensional transformer-based ar-

chitectures, highlighting effective combinations of embedding size, depth, and

regularization.
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Chapter 4

Experimental Setup and Results

Analysis

4.1 Data Set Visualization

Figure 1 illustrates the distribution of labels across the training, validation,

and test subsets of the Alzheimer’s disease dataset. The dataset contains

three diagnostic classes: Alzheimer’s Disease (AD), Mild Cognitive Impair-

ment (MCI), and Cognitively Normal (CN). The training set has 1,081 AD,

866 MCI, and 781 CN samples, while the validation set contains 231 AD, 186

MCI, and 168 CN samples. The test set has 232 AD, 186 MCI, and 167 CN

samples. The bar chart clearly shows that the AD class has the highest num-

ber of samples across all splits, whereas CN has the fewest. Maintaining a

similar distribution across all subsets is important for reliable model training

and evaluation.
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Figure 1: Label distribution in the training, validation, and test sets of the

Alzheimer’s dataset.

Table 1: Label distribution across the training, validation, and test sets of the

Alzheimer’s dataset.

Class Train Validation Test

AD 1081 231 232

MCI 866 186 186

CN 781 168 167

4.2 Performance Evaluation

4.2.1 RVFL Model Performance Evaluation

The Random Vector Functional Link (RVFL) model was evaluated on the

dataset with various hyperparameter configurations, including different num-

bers of hidden nodes (H) and regularization parameters (λ). The goal was
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to optimize validation accuracy and obtain the best performing model for the

test set.

Hyperparameter Search

The hyperparameter search explored multiple configurations of hidden nodes

and regularization parameters. Selected results are summarized below:

Hidden Nodes (H) λ Train Acc Val Acc Test Acc

10 0.1 1.0000 0.9453 0.9316

10 1 0.9996 0.9607 0.9556

20 1 1.0000 0.9624 0.9590

50 1 1.0000 0.9624 0.9590

100 1 1.0000 0.9607 0.9573

500 1 1.0000 0.9624 0.9624

Table 2: Selected results from RVFL hyperparameter search. The best configuration

was Hidden Nodes=20, λ = 1.

The best configuration was found to be:

– Hidden Nodes: 20

– Regularization (λ): 1

– Train Accuracy: 1.0000

– Validation Accuracy: 0.9624

Final Test Performance

The RVFL model with the best configuration was evaluated on the test set,

achieving:
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Metric Value

Final Test Accuracy 98.46%

Test Loss 0.6133

Table 3: Final test performance of the best RVFL model.

Evaluation Metrics (Test Set)

Metric Value

Accuracy 0.9846

Precision 0.9846

Recall 0.9846

F1-score 0.9846

Cohen’s Kappa 0.9767

Matthews Correlation Coefficient (MCC) 0.9767

Table 4: Evaluation metrics for the RVFL model on the test set.

Classification Report (Test Set)

Class Precision Recall F1-score Support

AD 0.9827 0.9784 0.9806 232

CN 1.0000 1.0000 1.0000 167

MCI 0.9733 0.9785 0.9759 186

Accuracy 0.9846

Macro Avg 0.9853 0.9856 0.9855 585

Weighted Avg 0.9846 0.9846 0.9846 585

Table 5: Classification report for the RVFL model on the test set.

– Test Accuracy: 98.46%
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– Test Loss: 0.6133

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 2: Performance evaluation plots for rvfl Modal.

4.2.2 Ensemble Deep RVFL (EDRVFL) Model Perfor-

mance Evaluation

The Ensemble Deep RVFL (EDRVFL) model was trained and evaluated on

the dataset using hyperparameter tuning to optimize performance. Two ag-

gregation strategies were used: **Voting** and **Addition**.

Hyperparameter Search

A hyperparameter search was performed to find the best combination of nodes,

regularization parameter λ, layers, and activation function. The results for key

configurations are summarized below:
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Nodes λ Layers Activation Train Acc (vote/add) Val Acc (vote/add)

10 1 10 relu 1.0000 / 1.0000 0.9282 / 0.9265

10 10 10 relu 1.0000 / 1.0000 0.9573 / 0.9573

10 20 10 relu 1.0000 / 1.0000 0.9590 / 0.9590

10 30 10 relu 0.9996 / 0.9996 0.9607 / 0.9607

10 40 10 relu 0.9996 / 0.9996 0.9607 / 0.9607

10 50 10 relu 0.9993 / 0.9993 0.9607 / 0.9607

Table 6: Selected results from EDRVFL hyperparameter search. The best configu-

ration was Nodes=10, λ = 30, Layers=10, Activation=relu.

The best hyperparameter configuration achieved:

– Nodes: 10

– Lambda (λ): 30

– Layers: 10

– Activation: relu

– Train Accuracy: 0.9996 (vote/add)

– Validation Accuracy: 0.9607 (vote/add)

Final Test Performance

The best EDRVFL model was retrained on the combined train+validation data

and evaluated on the test set. Both **Voting** and **Addition** aggregation

methods achieved the same performance:

Metric Voting Addition

Test Accuracy 98.63% 98.63%

Table 7: Final test accuracy of the EDRVFL model using voting and addition strate-

gies.
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Evaluation Metrics (Test Set)

Metric Voting Addition

Accuracy 0.9863 0.9863

Precision 0.9863 0.9863

Recall 0.9863 0.9863

F1-score 0.9863 0.9863

Cohen’s Kappa 0.9793 0.9793

MCC 0.9793 0.9793

Table 8: Evaluation metrics for the EDRVFL model on the test set.

Classification Report (Test Set)

Voting:

Class Precision Recall F1-score Support

AD 0.9786 0.9871 0.9828 232

CN 1.0000 1.0000 1.0000 167

MCI 0.9837 0.9731 0.9784 186

Accuracy 0.9863

Macro Avg 0.9874 0.9867 0.9871 585

Weighted Avg 0.9863 0.9863 0.9863 585

Table 9: Classification report for the EDRVFL model using voting strategy.

Addition:
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Class Precision Recall F1-score Support

AD 0.9786 0.9871 0.9828 232

CN 1.0000 1.0000 1.0000 167

MCI 0.9837 0.9731 0.9784 186

Accuracy 0.9863

Macro Avg 0.9874 0.9867 0.9871 585

Weighted Avg 0.9863 0.9863 0.9863 585

Table 10: Classification report for the EDRVFL model using addition strategy.

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 3: Performance evaluation plots for edrvfl Modal.

4.2.3 TRVFL Model Performance Evaluation

The TRVFL model was evaluated on the test set to assess its performance

across multiple metrics. The model was saved and reloaded to ensure repro-

ducibility, and identical results were obtained.
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Classification Report (Test Set)

Class Precision Recall F1-score Support

AD 0.9604 0.9397 0.9499 232

CN 0.9940 0.9940 0.9940 167

MCI 0.9319 0.9570 0.9443 186

Accuracy 0.9607

Macro Avg 0.9621 0.9636 0.9627 585

Weighted Avg 0.9609 0.9607 0.9607 585

Table 11: Classification report for the TRVFL model on the test set.

The TRVFL model demonstrates strong performance across all classes. Al-

though slightly lower than previous results, the model still achieves high pre-

cision and recall for AD, CN, and MCI.

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 4: Performance evaluation plots for trvfl Modal.

4.2.4 ConvNeXt V2 Model Performance Evaluation

The ConvNeXt V2 model was evaluated on the dataset before and after hyper-

parameter tuning. The goal was to maximize validation accuracy and obtain

a robust model for the test set.
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Initial Model Performance (Before Hyperparameter Tuning)

Before hyperparameter tuning, the model achieved the following performance

on the test set:

Metric Value

Test Accuracy 95.73%

Table 12: Performance of the ConvNeXt V2 model before hyperparameter tuning.

Classification Report (Before Tuning):

Class Precision Recall F1-score Support

AD 0.942 0.963 0.952 232

CN 0.990 0.994 0.992 167

MCI 0.960 0.930 0.945 186

Accuracy 0.9573

Macro Avg 0.964 0.962 0.963 585

Weighted Avg 0.957 0.957 0.957 585

Table 13: Classification report for the ConvNeXt V2 model before hyperparameter

tuning.

Hyperparameter Tuning

A hyperparameter search was conducted over 16 combinations of learning rate,

batch size, drop path rate, head initialization scale, weight decay, and epochs.

The best configuration obtained was:

– Variant: femto

– Learning Rate: 0.0003

– Batch Size: 64

– Drop Path Rate: 0.1
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– Head Init Scale: 0.75

– Weight Decay: 0.0001

– Epochs: 30

This configuration achieved the highest validation accuracy of 96.92%.

Final Model Performance (After Hyperparameter Tuning)

Metric Validation Set Test Set

Accuracy 96.92% 97.26%

Training Time 37.0 s

Table 14: Final evaluation metrics for the ConvNeXt V2 model after hyperparameter

tuning.

Classification Report (After Tuning):

Class Precision Recall F1-score Support

AD 0.9578 0.9784 0.9680 232

CN 0.9940 1.0000 0.9970 167

MCI 0.9722 0.9409 0.9563 186

Accuracy 0.9726

Macro Avg 0.9747 0.9731 0.9738 585

Weighted Avg 0.9727 0.9726 0.9726 585

Table 15: Classification report for the ConvNeXt V2 model after hyperparameter

tuning.

This comparison clearly demonstrates that hyperparameter tuning improved

the model’s overall performance, increasing the test accuracy from 95.73% to

97.26% and improving class-wise precision, recall, and F1-scores.
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(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 5: Performance evaluation plots for ConvNeXt V2 model.

4.2.5 Swin Classifier Performance Evaluation

The Swin Classifier was evaluated on the dataset before and after hyperpa-

rameter tuning. The goal was to improve model accuracy and obtain reliable

predictions on the test set.

Initial Model Performance (Before Hyperparameter Tuning)

Before hyperparameter tuning, the model achieved the following performance:

Metric Value

Test Accuracy 95.38%

Table 16: Performance of the Swin Classifier before hyperparameter tuning.

Final Model Performance (After Hyperparameter Tuning)

After tuning hyperparameters, the model achieved the following performance:

Metric Value

Final Test Accuracy 97.09%

Table 17: Performance of the Swin Classifier after hyperparameter tuning.
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Classification Report (Tuned Model - Test Set)

Class Precision Recall F1-score Support

AD 0.9574 0.9698 0.9636 232

CN 0.9940 1.0000 0.9970 167

MCI 0.9670 0.9462 0.9565 186

Accuracy 0.9709

Macro Avg 0.9728 0.9720 0.9724 585

Weighted Avg 0.9709 0.9709 0.9709 585

Table 18: Classification report of the Swin Classifier on the test set after hyperpa-

rameter tuning.

Hyperparameter tuning improved the test accuracy from 95.38% to 97.09%

and enhanced class-wise precision, recall, and F1-scores, particularly for the

MCI and AD classes.

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 6: Performance evaluation plots for Swin Classifier.
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4.3 Performance Comaprision

Model Accuracy (%) Precision Recall F1-score

ConvNeXt V2[14] 97.26 0.9727 0.9726 0.9726

Swin Classifier[7] 97.09 0.9709 0.9709 0.9709

TRVFL[11] 96.07 0.9621 0.9636 0.9627

EDRVFL[3] 98.63 0.9863 0.9863 0.9863

RVFL[8] 98.46 0.9846 0.9846 0.9846

Table 19: Comparison of performance metrics for all five models on the test set.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this study, we looked at several machine learning and deep learning models

to detect and classify Alzheimer’s Disease (AD), Mild Cognitive Impairment

(MCI), and Cognitively Normal (CN) subjects using imaging and feature data.

The models we examined were ConvNeXt V2, Swin Classifier, Random Vector

Functional Link (RVFL), TRVFL, and Ensemble Deep RVFL (EDRVFL).

The results show that all models performed well in classification, with signifi-

cant variations in accuracy and reliability.

– ConvNeXt V2 achieved a test accuracy of 97.26

– Swin Classifier performed slightly better with a test accuracy of 97.09

– RVFL and its variants TRVFL and EDRVFL reached the highest accu-

racies of 98.63

– Ensemble strategies, especially in EDRVFL, improved reliability, demon-

strating strength across class labels with high precision, recall, F1-scores.

Overall, the study shows that functional link neural networks, particularly

when used in ensemble architectures, perform better for Alzheimer’s detection.
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Deep learning image-based models also produce strong results. This suggests

that multi-modal approaches, which combine imaging and structured features,

can further improve early detection of Alzheimer’s Disease.

The models created in this project can serve as a basis for real-world clinical

decision support systems. They offer reliable predictions to help neurologists

and healthcare professionals with early diagnosis and intervention planning.

5.2 Future Work

Future extensions of this research may involve expanding the dataset to in-

clude more diverse subjects and imaging variations, which can further im-

prove model stability. Additionally, exploring new deep learning architectures,

transformer-based medical models, or hybrid fusion strategies could improve

diagnostic accuracy. Another important direction is incorporating explainable

AI techniques to provide clearer insights into model decisions, making the sys-

tem more transparent and clinically reliable. Finally, real-time deployment,

validation across institutions, and long-term analysis of disease progression

can significantly broaden the practical application of this work.
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Appendix A

Some Complex Proofs and

simple Results
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