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Preface

The early detection of Alzheimer’s Disease (AD) is crucial for timely intervention and
improving patient outcomes. This B.Tech. project focuses on developing an effective
framework for diagnosing Alzheimer’s using multimodal neuroimaging data along
with machine learning techniques. These techniques include ConvNeXtV2 Swin
Classifier Random Vector Functional Link (RVFL), TRVFL, and ensemble-based
methods.

The main goal of this work is to create models that can accurately classify AD,
Mild Cognitive Impairment (MCI), and cognitively normal (CN) subjects. The
project highlights careful tuning of hyperparameters, the use of ensemble strategies,
and a comparative evaluation of deep learning and functional link-based models to
achieve the best results.

This thesis shows how theoretical knowledge connects with practical experimen-
tation in the field of computational neuroscience. It also emphasizes the value of
using multimodal data to improve diagnostic accuracy and the potential of machine
learning models to help clinicians make decisions.

We hope the methods and findings in this work will lay the groundwork for
more research in Alzheimer’s detection and inspire future advancements in medical
imaging and predictive modeling.

We sincerely thank Prof. Deepak Gupta for his guidance and support, along
with our peers for their valuable feedback, which has greatly improved the quality

of this work.
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Chapter 1
Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by progres-
sive memory impairment, cognitive decline, and an individual’s inability to execute
the activities of daily living. It is important to identify AD early because effective
intervention can delay the progression of the disease and increase quality of life for
patients and their families. Recent advances in machine learning and deep learning
provide the capability for automated analysis of neuroimaging data, which assists in
the early and accurate identification of AD. This project demonstrates a multimodal
neuroimaging-based AD diagnostic system based on the ADNI MRI dataset using
ResNet-50 neural network feature extraction along with multiple other advanced
classifiers RVFL and modified RVFLs (such as EDRVFL, TRVFL, Swift Classifier,
and ConvNeXtV2).

1.1 Motivation

Alzheimer’s Disease (AD) is a progressive neurodegenerative condition that steadily
impacts memory, cognition, and behavioral functioning. The increasing elderly pop-
ulation globally increases the prevalence of Alzheimer’s Disease at a rapidly growing
rate, making it a significant public health issue. According to recent clinical studies,
there are millions of people around the globe with AD, and this will increase dra-

matically in coming decades. Despite significant research efforts, AD does not have



a cure, which underscores the significant importance of early and accurate diagnosis.
Early diagnosis allows for timely intervention, slows the progression of the disease,
and improves the quality of life for the patient.

Magnetic Resonance Imaging has become one of the best non-invasive techniques
available to assess structural brain alterations associated with AD; however, the
reading of MRIs relies on expert knowledge in radiology and is often based on a
highly subjective and time-consuming analysis that also suffers from inter-observer
variability. Traditional machine-learning approaches have offered partial solutions,
but there remain challenges associated with capturing the complexity of patterns
associated with neuroimaging.

Despite such advancements, the unification of deep feature extraction with fast,
robust, and generalizable classifiers still remains an open challenge. Specifically,
evolutionary variants of TRVFL can be further optimized to improve generalization
and reduce overfitting, especially in complex neuroimaging tasks. There is, there-
fore, a strong motivation to develop a comprehensive multimodal framework that
will unify ResNet-50-based feature extraction with advanced evolutionary TRVFL
classifiers in the interest of reliable diagnosis of Alzheimer’s Disease using the ADNI
MRI dataset.

These findings motivate the present work, which aims at bridging existing gaps
through using multimodal neuroimaging, advanced deep-learning feature extraction,
and evolutionary classification techniques to be able to reach a more efficient, accu-

rate, and automated AD diagnosis system.

1.2 Problem Statement

The difficulty in diagnosing Alzheimer’s Disease from MRI scans lies in the fact that
there are subtle structural brain changes, high-dimensional data, and a high reliance
on subjective expert interpretation. Most of the traditional models in machine learn-
ing have poor generalization performance when applied to complex neuroimaging
datasets. Though deep learning techniques like ResNet-50 extract meaningful fea-

tures, choosing an efficient classifier with good accuracy is still a main issue. Thus,



this project tries to overcome these shortcomings by developing a robust and reli-
able framework combining deep feature extraction with deep learning and machine

learning models.

1.3 Objectives

The main objectives of this project are as follows:

e To create an automatic framework for diagnosing Alzheimer’s Disease using
MRI data from the ADNI dataset.

e To extract detailed and distinct features from MRI scans, use the ResNet-50

architecture.

e To implement and evaluate multiple classifiers, including RVFL, EDRVFL,
TRVFL, Evolutionary TRVFL, Swift Classifier, and ConvNeXtV2. To perform
hyperparameter tuning for all models to achieve the best performance and

ensure a fair comparison.

e To compare the performance of all models, we will find the best classifier for
AD detection. We will use various evaluation metrics, including accuracy,
precision, recall, Fl-score, specificity, sensitivity, ROC-AUC, and confusion

matrix analysis.



Chapter 2

Literature Review and Related
Work

2.1 Multimodal Neuroimaging with Evolution-

ary RVFL (Goel et al., 2023)

Goel et al. [2] proposed an Evolutionary RVFL (E-RVFL) classifier for early
AD diagnosis using multimodal MRI and PET data. They combined deep
and handcrafted features from both types of scans to capture structural and
metabolic brain changes. The RVFL parameters were improved using an evo-
lutionary strategy, which made the model more robust, reduced its depen-
dence on random initialization, and improved its generalization. Experiments
on ADNI showed that E-RVFL achieved higher accuracy and better overall
performance compared to traditional RVFL, SVM, and deep CNN baselines.



2.2 Conv-eRVFL: CNN-Enhanced RVFL for
AD Detection (Sharma et al., 2023)

Sharma et al. [12] introduced Conv-eRVFL, a hybrid model combining CNN-
based feature extraction with an ensemble RVFL classifier for multimodal
(MRI + PET) AD diagnosis. CNN features captured rich spatial patterns,
while the ensemble RVFL improved stability and decision robustness. Using
the ADNI dataset, Conv-eRVFL outperformed traditional RVFL, standalone
CNNs, and other baselines across accuracy, sensitivity, and specificity, demon-

strating the strength of merging deep features with ensemble RVFL learning.

2.3 Biomarker Models

Early work on Alzheimer’s disease (AD) focused on understanding biomarker
progression. Jack et al. [5] proposed a dynamic model describing the sequence
of pathological changes in AD. The ADNI study [4] further standardized MRI

acquisition and established a widely used benchmark dataset.

2.4 Classical ML Approaches

Traditional machine learning techniques relied on handcrafted MRI features.
Fan et al. [1] demonstrated that feature-selected structural MRI measurements
combined with SVMs can effectively classify AD and MCI.

2.5 Deep Learning Methods

Deep learning significantly improved MRI feature representation. Suk et
al. [13] introduced hierarchical deep feature learning with multimodal fusion.
Payan and Montana [9] used 3D CNNs to directly learn from volumetric MRI.



Liu et al. [6] proposed landmark-based deep multi-instance learning for more

discriminative spatial pattern extraction.

2.6 MRI Preprocessing

Proper MRI preprocessing enhances the reliability of longitudinal studies.
Reuter et al. [10] presented a robust within-subject template estimation method

using FreeSurfer, improving consistency in downstream classification.

2.7 Summary

Overall, research has shifted from handcrafted structural features to end-to-
end deep learning frameworks, supported by standardized datasets like ADNI

and strong preprocessing pipelines.



Chapter 3

Methodology and System

Architecture

3.1 Methodological Foundation

The foundation of this project combines deep feature extraction and classi-
fication techniques to create a framework for diagnosing Alzheimer’s Disease
(AD) using MRI data from the ADNI dataset. The methodology includes
neuroimaging preprocessing, deep feature extraction, and classification with

RVFL-based models, along with modern deep-learning classifiers.

First, the MRI scans go through important preprocessing steps, such as skull
stripping, intensity normalization, resizing, and noise reduction. These steps
ensure consistency across the dataset and maintain crucial structural features
relevant to AD diagnosis. After preprocessing, deep feature extraction occurs
using the ResNet-50 architecture. This architecture captures high-level spatial
and structural patterns from the MRI images through its residual learning

framework. The deep features extracted form the input for various classifiers.



Random Vector Functional Link (RVFL) networks are one of the main clas-
sification methods because of their fast learning ability and direct input-to-
output connections. Improved variants like EDRVFL, TRVFL, and Evolution-
ary TRVFL are also used to boost model stability, generalization, and perfor-
mance. Evolutionary TRVFL uses population-based optimization strategies
to improve weights, biases, and regularization parameters. This leads to more

stable decision boundaries and better classification results.

Along with RVFL-based models, the methodology includes modern deep-learning
classifiers like the Swift Classifier and ConvNeXt V2. The Swift Classifier pro-
vides quick inference and a lightweight design suitable for medical imaging
tasks. In contrast, ConvNeXt V2 offers better hierarchical feature learning
with a next-generation convolutional design. These models work alongside the

RVFL methods and allow for a thorough comparative analysis.

The performance of all models is assessed using a variety of metrics, including
accuracy, precision, recall, Fl-score, sensitivity, specificity, ROC-AUC, and
confusion matrix analysis. These metrics help identify the most effective clas-
sifier and give a clear understanding of each model’s strengths in detecting

Alzheimer’s Disease.

Overall, the foundation of this project merges deep neural feature extrac-
tion, evolutionary learning, classical machine-learning models, and modern
deep-learning architectures. This creates a robust and scalable framework for

accurately diagnosing Alzheimer’s Disease using MRI data.

3.1.1 Preprocessing

The dataset in this study comes from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). It includes MRI scans divided into three main categories:
Alzheimer’s Disease (AD), Cognitively Normal (CN), and Mild Cognitive Im-
pairment (MCI). This varied class distribution allows for a thorough evaluation

of the proposed models at different stages of neurodegeneration.



1. Feature Extraction Feature extraction in this project uses the ResNet-
50 deep convolutional neural network, known for its strong feature rep-
resentation abilities. ResNet-50 has a residual learning framework with
50 layers, which helps capture both low-level and high-level structural
patterns in MRI images. The residual connections reduce the vanishing
gradient problem, allowing the network to learn deeper and more specific

features.

In this work, the preprocessed MRI scans go through the pretrained
ResNet-50 model, excluding the final classification layers, to extract deep
feature vectors. These features provide solid input representations for
the next RVFL-based models, the Swift Classifier, and ConvNeXt V2.
By using ResNet-50, the extracted features effectively include important
spatial, textural, and anatomical information that helps differentiate be-
tween AD, MCI, and CN classes.

2. Feature Matrix Cleaning, Imputation, and One-Hot Encoding:
After extracting features with ResNet-50, the feature matrix is cleaned
by converting all feature columns into numeric format. Invalid or non-
numeric values are turned into NaN. Infinite values and zeros are also
treated as missing data to avoid skewing the learning process. Columns
that only contain NaN values are removed. The remaining missing values
are filled in using the median of each feature. Additionally, categorical
attributes like class labels are processed with one-hot encoding to convert
them into machine-readable binary vectors. This makes sure that all
features are numeric, consistent, and properly formatted for downstream

classifiers.



3.2 Model Architecture

3.2.1 RVFL Architecture:

The Random Vector Functional Link (RVFL) model used in this study has
a direct input-to-output connection and a randomly generated hidden layer.
The structure includes three main parts: (i) a direct linear layer that maps
the input features to the output, (ii) a hidden layer with randomly assigned
weights and a sigmoid activation function, and (iii) a hidden-to-output layer
that transforms the activated hidden features. During the forward pass, the
hidden features are combined with the original input to create a better fea-
ture representation. The final prediction comes from adding the outputs of
the direct and hidden pathways. This design allows for fast training, better

generalization, and effective handling of high-dimensional feature vectors.

3.2.2 EDRVFL Architecture:

The EDRVFL model has several enhancement layers. Each layer consists of
randomly set weights and biases. Every layer standardizes the input, applies
a nonlinear activation function (like sigmoid, sine, hardlim, tribas, radbas,
ReLU, or leaky ReLLU), and combines hidden features with the original input.
A bias term is added, and the output weights for each layer are calculated using
ridge regression. Instead of using a single output, EDRVFL combines predic-
tions from all layers through (i) majority voting and (ii) additive softmax-based
probability fusion. This group of deep random layers improves robustness, low-
ers overfitting, and allows for strong performance even with limited training
data.
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3.2.3 TRVFL Architecture:

The TRVFL model adopts a two-stage Random Vector Functional Link (RVFL)
architecture enhanced with an ¢;-norm based quadratic programming frame-
work. First, random weights and biases generate L nonlinear hidden features
through sigmoid activation, which are concatenated with the original input to
form an expanded feature representation. For each class, the model constructs
a one-vs-rest binary learning setup by splitting samples into positive and neg-
ative subsets. Two quadratic programming problems with box constraints are
then solved to obtain dual variables for both subsets, ensuring robust class
separation. The primal output weights (1, 32) are recovered using regular-
ized inverses of HT H and GT G, following the original MATLAB formulation.
During inference, the enhanced feature matrix is multiplied with these learned
weights to compute decision values, and the binary decision rule assigns the
positive class when |y;| < |y2|. Extending this mechanism to multi-class clas-
sification, the model trains K independent one-vs-rest submodels, each pro-
ducing a score based on the magnitude of |I3;|. The final predicted label
corresponds to the class yielding the minimum score, representing the closest
match to its learned manifold. This architecture provides a computationally

simple yet effective framework for multi-class neuroimaging classification.

3.2.4 ConvNeXtV2 Feature-Aware Classifier Architec-

ture:

To use the high-dimensional ResNet-50 feature vectors in a convolutional ar-
chitecture, a feature grid projection strategy is applied. The original feature
vector is reshaped into a 2D grid by calculating an optimal height and width
decomposition. If the vector length is not perfectly divisible, zero-padding is
used to maintain the spatial structure. The reshaped input is treated as a

single-channel image and is passed through the ConvNeXtV2 backbone.

11



ConvNeXtV2 has four hierarchical stages. Each stage starts with a downsam-
pling layer, followed by several depthwise convolutional blocks. Each block
includes: (1) a depthwise convolution, (2) Layer Normalization, (3) pointwise
linear expansions, (4) a GELU activation, (5) a Global Response Normaliza-
tion (GRN) module, and (6) a final pointwise projection. To enhance gen-
eralization, stochastic depth using the DropPath operator is applied across
blocks.

The output from the final stage is globally averaged and normalized before
being sent to a fully connected classification head. The classifier is optimized
with the BCEWithLogits loss, using an AdamW optimizer and softmax-based
probability inference. This setup allows ConvNeXtV2 to learn spatially coher-
ent patterns from reshaped feature embeddings, achieving high performance

even without raw image inputs.

3.2.5 Swin Transformer V2 Feature-Aware Classifier Ar-

chitecture:

To change a high-dimensional feature vector into a structure for hierarchical
attention, the input feature embedding is divided into a fixed number of tokens
arranged on a 2D grid. Let the vector length be F' and the number of tokens be
T = H x W, where T is a perfect square. Each chunk of size F'//T is projected
into an embedding space using a linear patch-projection layer. This creates a
(H x W) token map.

This token grid goes through a two-stage Swin Transformer V2 hierarchy. Each
stage has stacked Swin Transformer blocks that alternate between standard
windowed multi-head self-attention (W-MSA) and shifted window attention
(SW-MSA). Swin V2 improvements, like cosine attention scaling, continuous
relative position bias through an MLP, logit-scale stabilization, and better

normalization, are included to improve training stability on small windows.

Within each block, LayerNorm is applied before attention. This is followed
by residual connections, stochastic depth (DropPath), and a GELU-activated

12



MLP expansion layer. Patch Merging is used between stages to decrease spa-
tial resolution while doubling channel dimensionality, allowing a hierarchical

encoder similar to CNN downsampling.

After the final stage, features are normalized and averaged globally across
tokens. A fully connected classification head generates the output logits for the
three target classes. Training uses the AdamW optimizer with cross-entropy
loss and softmax-based inference. This setup lets the Swin V2 architecture
learn structured correlations within pre-extracted features, even without using

raw image inputs.

3.3 Tuning

3.3.1 RVFL Hyperparameter Tuning Setup

To find the best setup for the Random Vector Functional Link (RVFL) net-
work, a focused search was carried out over two key parameters: the number
of hidden enhancement nodes and the regularization coefficient A\. The tuning
aimed to look at how model capacity, through hidden neurons, and general-

ization control, through Tikhonov regularization, affect performance.

The hyperparameter space explored in this study consisted of:

— Hidden nodes: Multiple enhancement-layer sizes were tested (e.g., 256,
512, 768, 843).

— Regularization parameter \: A logarithmically spaced range was eval-

uated to capture both weak and strong regularization regimes.

For each hyperparameter configuration, the RVFL model was trained on the
training split and evaluated on the validation split. Both training and valida-
tion accuracies were recorded to analyze how regularization and hidden-layer
width affect performance. A comprehensive performance visualization was

generated, including:

13



— Train accuracy vs. log,,(A\) curves for different hidden-node settings.
— Validation accuracy vs. log;,(\) curves to identify overfitting trends.

— A heatmap of validation accuracy, with hidden-node count on the
vertical axis and log;,(A) on the horizontal axis, providing a global view

of search-space performance.

The Cartesian evaluation of hidden size and regularization strength allowed for
a clear identification of the best-performing configuration. We later used the
optimal hyperparameter pair to train the final RVFL model on the combined
training and validation set. We then reported the performance on the held-out

test set.

3.3.2 EDRVFL Hyperparameter Tuning Setup

To improve the Ensemble Deep Random Vector Functional Link (EDRVFL)
classifier, we conducted a focused hyperparameter search on the most impor-
tant architectural and regularization parameters. The EDRVFL model builds
on the traditional RVFL network by adding multiple enhancement layers and
combining their predictions using both voting and addition-based ensemble
strategies. Therefore, choosing the right values for the number of enhance-
ment nodes, the depth of stacked layers, and the regularization strength is

crucial for stable and effective classification.

The hyperparameter space explored consisted of the following components:

— Number of enhancement nodes (7,,04c5): Determines the dimension-

ality of the feature expansion in each RVFL layer.

— Regularization coefficient (\): Controls the magnitude of the ridge

regression penalty during output-weight computation.

— Number of stacked layers (14, ): Specifies the depth of the EDRVFL

architecture, enabling multi-level feature transformation.

— Activation function: The nonlinear activation applied in enhancement

layers (ReLU in this study).

14



Each possible parameter configuration was evaluated by training the EDRVFL
on the training split and measuring performance on the validation split using

both ensemble metrics:

— Voting accuracy — majority vote across layer outputs.

— Addition accuracy — aggregate probability across layers.

For each configuration, we recorded both training and validation accuracies.
This created a detailed search log that we used later for visualization and
model selection. The search looked at different regularization strengths while
keeping the number of nodes, activation function, and depth the same for a
controlled analysis. This setup allowed us to study how changes in the ridge

penalty affect the stability and generalization of the ensemble’s performance.

At the end of the search, we chose the configuration with the highest validation
accuracy as the best EDRVFL setup. We then retrained the model using the
combined training and validation set before reporting the performance on the

test set.

3.3.3 TRVFL Hyperparameter Tuning

To optimize the performance of the TRVFL classifier, a systematic hyperpa-
rameter tuning procedure was employed. The tuning process focused primarily
on two key parameters: the number of random hidden nodes (Lp;qgen) and the
penalty coefficient (c;) used in the ¢;-norm quadratic programming stage. For
each candidate pair (Lpigden,c1), a complete multi-class TRVFL model was
trained using the one-vs-rest setup, followed by evaluation on the validation
dataset. The validation accuracy was computed for each configuration, and
the best-performing combination was selected based on the highest accuracy
achieved. During this search, errors related to empty class splits or singular
matrices were gracefully handled by skipping invalid parameter combinations.
The tuning loop maintained records of the best accuracy, along with the corre-

sponding hidden layer size and penalty parameter, ensuring that the optimal

15



configuration was identified. This procedure allowed the model to strike an ef-
fective balance between representational capacity and regularization strength,

ultimately improving classification performance.

3.3.4 ConvNeXtV2 Hyperparameter Tuning Setup

To optimize the ConvNeXtV2-based classifier, we designed a thorough grid
search strategy that covered various architectural and training parameters.
The search space included four model variants: atto, femto, pico, and nano. It
also featured key parameters such as learning rate, batch size, drop-path rate,

head initialization scale, weight decay, and training epochs.

The complete hyperparameter grid included these ranges:

— Model variant: atto, femto, pico, nano

Learning rate: 1 x 1074, 3 x 1074, 1 x 1073

Batch size: 16, 32, 64

Drop-path rate: 0.0, 0.1, 0.2

Head initialization scale: 0.5, 0.75, 1.0

Weight decay: 1 x 1074, 5 x 10~
— Epochs: 20, 30, 40

Given the large search space, we also prepared a smaller grid for quicker ex-
perimentation. This reduced configuration centered on the femto and pico

variants with more focused parameter ranges:

— Model variant: femto, pico

Learning rate: 3 x 1074, 1 x 1073

Batch size: 32, 64

Drop-path rate: 0.0, 0.1

Head initialization scale: 0.75

16



— Weight decay: 1 x 10~*

— Epochs: 30

We generated each hyperparameter configuration using a Cartesian product
over the selected grid. This approach allowed systematic exploration while
keeping computational demands manageable. This tuning process helped us

select the best ConvNeXtV2 variant and its training setup.

3.3.5 Swin Classifier Hyperparameter Tuning

To improve the performance of the Swin Transformer-based classifier, a ran-
dom search strategy was used across a multi-dimensional hyperparameter
space. The search considered several factors, including learning rate, weight
decay, embedding dimension, hierarchical depth, number of attention heads,

and drop-path regularization probability. The tuning space included:

Ir € {107%,5 x 107%,107%}, weightdecay € {107 107%,5 x 102},

embeddim € {64,128,256}, depths € {(2,2),(2,4), (4,4)},

numheads € {(4,8), (8,16), (4,4)}, drop — pathrate € {0.05,0.1,0.2}.

Given the large configuration space, a fixed-budget random search with five
trials was performed. For each sampled configuration, the classifier was trained
for 25 epochs using the AdamW optimizer and one-hot encoded labels, apply-
ing Binary Cross-Entropy Loss on the logits. The model’s performance was
assessed through validation accuracy, with both configuration results and the

best-performing model recorded.

During each trial, the SwinClassifier was created with the sampled hyperpa-

rameters:

17



Config = {lr,weightdecay, embeddim, depths, heads, drop — path},

and optimized end-to-end on the extracted deep features. Validation accuracy

acted as the fitness measure, allowing for comparison across configurations.

After all trials were completed, the random search found the best configura-
tion as the one with the highest validation accuracy. This configuration and
its trained model weights were kept for final testing. The tuning results show
the usefulness of random search for high-dimensional transformer-based ar-
chitectures, highlighting effective combinations of embedding size, depth, and

regularization.

18



Chapter 4

Experimental Setup and Results

Analysis

4.1 Data Set Visualization

Figure 1 illustrates the distribution of labels across the training, validation,
and test subsets of the Alzheimer’s disease dataset. The dataset contains
three diagnostic classes: Alzheimer’s Disease (AD), Mild Cognitive Impair-
ment (MCI), and Cognitively Normal (CN). The training set has 1,081 AD,
866 MCI, and 781 CN samples, while the validation set contains 231 AD, 186
MCI, and 168 CN samples. The test set has 232 AD, 186 MCI, and 167 CN
samples. The bar chart clearly shows that the AD class has the highest num-
ber of samples across all splits, whereas CN has the fewest. Maintaining a
similar distribution across all subsets is important for reliable model training

and evaluation.
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Label Distribution in Alzheimer's Dataset
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Figure 1: Label distribution in the training, validation, and test sets of the

Alzheimer’s dataset.

Table 1: Label distribution across the training, validation, and test sets of the

Alzheimer’s dataset.

Class | Train | Validation | Test

AD 1081 231 232
MCI 866 186 186
CN 781 168 167

4.2 Performance Evaluation

4.2.1 RVFL Model Performance Evaluation

The Random Vector Functional Link (RVFL) model was evaluated on the
dataset with various hyperparameter configurations, including different num-

bers of hidden nodes (H) and regularization parameters (A). The goal was
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to optimize validation accuracy and obtain the best performing model for the
test set.
p Hyperparameter Search

The hyperparameter search explored multiple configurations of hidden nodes

and regularization parameters. Selected results are summarized below:

Hidden Nodes (H) A Train Acc Val Acc Test Acc
10 0.1 1.0000 0.9453 0.9316

10 1 0.9996 0.9607 0.9556
20 1 1.0000 0.9624 0.9590
20 1 1.0000 0.9624 0.9590
100 1 1.0000 0.9607 0.9573
200 1 1.0000 0.9624 0.9624

Table 2: Selected results from RVFL hyperparameter search. The best configuration
was Hidden Nodes=20, A = 1.

The best configuration was found to be:

— Hidden Nodes: 20
— Regularization (A): 1
— Train Accuracy: 1.0000

— Validation Accuracy: 0.9624

g Final Test Performance

The RVFL model with the best configuration was evaluated on the test set,

achieving:
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Metric Value
Final Test Accuracy 98.46%
Test Loss 0.6133

Table 3: Final test performance of the best RVFL model.

i Evaluation Metrics (Test Set)

Metric Value
Accuracy 0.9846
Precision 0.9846
Recall 0.9846
F1-score 0.9846
Cohen’s Kappa 0.9767

Matthews Correlation Coefficient (MCC) 0.9767

Table 4: Evaluation metrics for the RVFL model on the test set.

i Classification Report (Test Set)

Class Precision Recall Fl-score Support
AD 0.9827 0.9784 0.9806 232
CN 1.0000 1.0000 1.0000 167
MCI 0.9733 0.9785 0.9759 186
Accuracy 0.9846

Macro Avg 0.9853 0.9856 0.9855 585
Weighted Avg 0.9846 0.9846 0.9846 585

Table 5: Classification report for the RVFL model on the test set.

— Test Accuracy: 98.46%
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— Test Loss: 0.6133

Confusion Matrix (RVFL Model) Precision-Recall Curves (One-vs-Rest) ROC Curves (One-vs-Rest)
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Figure 2: Performance evaluation plots for rvfl Modal.

4.2.2 Ensemble Deep RVFL (EDRVFL) Model Perfor-

mance Evaluation

The Ensemble Deep RVFL (EDRVFL) model was trained and evaluated on
the dataset using hyperparameter tuning to optimize performance. Two ag-

gregation strategies were used: **Voting** and **Addition™**.

B Hyperparameter Search

A hyperparameter search was performed to find the best combination of nodes,
regularization parameter A, layers, and activation function. The results for key

configurations are summarized below:
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Nodes A Layers Activation Train Acc (vote/add) Val Acc (vote/add)
10 1 10 relu 1.0000 / 1.0000 0.9282 / 0.9265
10 10 10 relu 1.0000 / 1.0000 0.9573 / 0.9573
10 20 10 relu 1.0000 / 1.0000 0.9590 / 0.9590
10 30 10 relu 0.9996 / 0.9996 0.9607 / 0.9607
10 40 10 relu 0.9996 / 0.9996 0.9607 / 0.9607
10 50 10 relu 0.9993 / 0.9993 0.9607 / 0.9607

Table 6: Selected results from EDRVFL hyperparameter search. The best configu-

ration was Nodes=10, A = 30, Layers=10, Activation=relu.

The best hyperparameter configuration achieved:

— Nodes: 10

— Lambda (\): 30

— Layers: 10

— Activation: relu

— Train Accuracy: 0.9996 (vote/add)

— Validation Accuracy: 0.9607 (vote/add)

g Final Test Performance

The best EDRVFL model was retrained on the combined train+validation data
and evaluated on the test set. Both **Voting™* and **Addition** aggregation

methods achieved the same performance:

Metric
Test Accuracy 98.63%

Voting Addition
98.63%

Table 7: Final test accuracy of the EDRVFL model using voting and addition strate-

gies.
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i Evaluation Metrics (Test Set)

Metric Voting Addition
Accuracy 0.9863 0.9863
Precision 0.9863 0.9863
Recall 0.9863 0.9863
F1-score 0.9863 0.9863
Cohen’s Kappa 0.9793 0.9793
MCC 0.9793 0.9793

Table 8: Evaluation metrics for the EDRVFL model on the test set.

i Classification Report (Test Set)

Voting:

Class Precision Recall Fl-score Support
AD 0.9786 0.9871 0.9828 232
CN 1.0000 1.0000 1.0000 167
MCI 0.9837 0.9731 0.9784 186
Accuracy 0.9863

Macro Avg 0.9874 0.9867 0.9871 585
Weighted Avg 0.9863 0.9863 0.9863 585

Table 9: Classification report for the EDRVFL model using voting strategy.

Addition:
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Class Precision Recall F1l-score Support

AD 0.9786 0.9871 0.9828 232
CN 1.0000 1.0000 1.0000 167
MCI 0.9837 0.9731 0.9784 186
Accuracy 0.9863

Macro Avg 0.9874 0.9867  0.9871 585
Weighted Avg 0.9863 0.9863 0.9863 585

Table 10: Classification report for the EDRVFL model using addition strategy.

Confusion Matrix - Addition (Ensemble Deep RVFL} Precision-Recall Curves (One-vs-Rest) - Addition ROC Curves (One.vs.Rest) - Addition

[e]
Predicted label

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 3: Performance evaluation plots for edrvfl Modal.

4.2.3 TRVFL Model Performance Evaluation

The TRVFL model was evaluated on the test set to assess its performance
across multiple metrics. The model was saved and reloaded to ensure repro-

ducibility, and identical results were obtained.
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p Classification Report (Test Set)

Class Precision Recall Fl-score Support
AD 0.9604 0.9397 0.9499 232
CN 0.9940 0.9940 0.9940 167
MCI 0.9319 0.9570 0.9443 186
Accuracy 0.9607

Macro Avg 0.9621 0.9636 0.9627 585
Weighted Avg 0.9609 0.9607 0.9607 585

Table 11: Classification report for the TRVFL model on the test set.

The TRVFL model demonstrates strong performance across all classes. Al-
though slightly lower than previous results, the model still achieves high pre-
cision and recall for AD, CN, and MCI.

TRVFL-INORM - Confusion Matrix (Test Set) Precision-Recall Curves (One-vs-Rest) - Best TRVFL Model ROC Curves (One-vs-Rest) - Best TRVFL Model

10
iy~
8

N
o
Predicted label necal False Positve Rate

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 4: Performance evaluation plots for trvfl Modal.

4.2.4 ConvNeXt V2 Model Performance Evaluation

The ConvNeXt V2 model was evaluated on the dataset before and after hyper-
parameter tuning. The goal was to maximize validation accuracy and obtain

a robust model for the test set.
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p Initial Model Performance (Before Hyperparameter Tuning)

Before hyperparameter tuning, the model achieved the following performance

on the test set:

Metric Value
Test Accuracy 95.73%

Table 12: Performance of the ConvNeXt V2 model before hyperparameter tuning.

Classification Report (Before Tuning):

Class Precision Recall Fl-score Support
AD 0.942 0.963 0.952 232
CN 0.990 0.994 0.992 167
MCI 0.960 0.930 0.945 186
Accuracy 0.9573

Macro Avg 0.964 0.962 0.963 585
Weighted Avg 0.957 0.957 0.957 585

Table 13: Classification report for the ConvNeXt V2 model before hyperparameter

tuning.

B Hyperparameter Tuning

A hyperparameter search was conducted over 16 combinations of learning rate,
batch size, drop path rate, head initialization scale, weight decay, and epochs.

The best configuration obtained was:

— Variant: femto
— Learning Rate: 0.0003
Batch Size: 64

— Drop Path Rate: 0.1
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— Head Init Scale: 0.75
— Weight Decay: 0.0001
— Epochs: 30

This configuration achieved the highest validation accuracy of 96.92%.

i Final Model Performance (After Hyperparameter Tuning)

Metric Validation Set Test Set
Accuracy 96.92% 97.26%
Training Time 37.0 s

Table 14: Final evaluation metrics for the ConvNeXt V2 model after hyperparameter

tuning.

Classification Report (After Tuning):

Class Precision Recall F1l-score Support
AD 0.9578 0.9784 0.9680 232
CN 0.9940 1.0000 0.9970 167
MCI 0.9722 0.9409 0.9563 186
Accuracy 0.9726

Macro Avg 0.9747 0.9731 0.9738 585
Weighted Avg 0.9727 0.9726 0.9726 585

Table 15: Classification report for the ConvNeXt V2 model after hyperparameter

tuning.

This comparison clearly demonstrates that hyperparameter tuning improved
the model’s overall performance, increasing the test accuracy from 95.73% to

97.26% and improving class-wise precision, recall, and F1-scores.
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Figure 5: Performance evaluation plots for ConvNeXt V2 model.

4.2.5 Swin Classifier Performance Evaluation

The Swin Classifier was evaluated on the dataset before and after hyperpa-
rameter tuning. The goal was to improve model accuracy and obtain reliable
predictions on the test set.

i Initial Model Performance (Before Hyperparameter Tuning)

Before hyperparameter tuning, the model achieved the following performance:

Metric Value
Test Accuracy 95.38%

Table 16: Performance of the Swin Classifier before hyperparameter tuning.

i Final Model Performance (After Hyperparameter Tuning)

After tuning hyperparameters, the model achieved the following performance:

Metric Value
Final Test Accuracy 97.09%

Table 17: Performance of the Swin Classifier after hyperparameter tuning.

30



p Classification Report (Tuned Model - Test Set)

Class Precision Recall Fl-score Support
AD 0.9574 0.9698 0.9636 232
CN 0.9940 1.0000 0.9970 167
MCI 0.9670 0.9462 0.9565 186
Accuracy 0.9709

Macro Avg 0.9728 0.9720 0.9724 585
Weighted Avg 0.9709 0.9709 0.9709 585

Table 18: Classification report of the Swin Classifier on the test set after hyperpa-

rameter tuning.

Hyperparameter tuning improved the test accuracy from 95.38% to 97.09%
and enhanced class-wise precision, recall, and F1-scores, particularly for the
MCT and AD classes.

Confusion Matrix - Tuned Model (Test Set)

(=]
predicted label

(a) Confusion Matrix (b) Precision-Recall Curve (c) ROC Curve

Figure 6: Performance evaluation plots for Swin Classifier.
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4.3 Performance Comaprision

Model Accuracy (%) Precision Recall F1l-score
ConvNeXt V2[14] 97.26 0.9727 0.9726 0.9726
Swin Classifier|7] 97.09 0.9709 0.9709 0.9709
TRVFL[11] 96.07 0.9621 0.9636 0.9627
EDRVFL[3] 98.63 0.9863 0.9863  0.9863
RVFLI§] 98.46 0.9846 0.9846 0.9846

Table 19: Comparison of performance metrics for all five models on the test set.

32



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this study, we looked at several machine learning and deep learning models
to detect and classify Alzheimer’s Disease (AD), Mild Cognitive Impairment
(MCI), and Cognitively Normal (CN) subjects using imaging and feature data.
The models we examined were ConvNeXt V2, Swin Classifier, Random Vector
Functional Link (RVFL), TRVFL, and Ensemble Deep RVFL (EDRVFL).

The results show that all models performed well in classification, with signifi-

cant variations in accuracy and reliability.

— ConvNeXt V2 achieved a test accuracy of 97.26
— Swin Classifier performed slightly better with a test accuracy of 97.09

— RVFL and its variants TRVFL and EDRVFL reached the highest accu-
racies of 98.63

Ensemble strategies, especially in EDRVFL, improved reliability, demon-

strating strength across class labels with high precision, recall, F1-scores.

Overall, the study shows that functional link neural networks, particularly

when used in ensemble architectures, perform better for Alzheimer’s detection.
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Deep learning image-based models also produce strong results. This suggests
that multi-modal approaches, which combine imaging and structured features,

can further improve early detection of Alzheimer’s Disease.

The models created in this project can serve as a basis for real-world clinical
decision support systems. They offer reliable predictions to help neurologists

and healthcare professionals with early diagnosis and intervention planning.

5.2 Future Work

Future extensions of this research may involve expanding the dataset to in-
clude more diverse subjects and imaging variations, which can further im-
prove model stability. Additionally, exploring new deep learning architectures,
transformer-based medical models, or hybrid fusion strategies could improve
diagnostic accuracy. Another important direction is incorporating explainable
AT techniques to provide clearer insights into model decisions, making the sys-
tem more transparent and clinically reliable. Finally, real-time deployment,
validation across institutions, and long-term analysis of disease progression

can significantly broaden the practical application of this work.
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Appendix A

Some Complex Proofs and

simple Results
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